教师名录
余潇群,男,1993年生,东南大学机械学院工业设计系讲师。研究领域为人机交互(基于IMU和CV的人体姿态/运动评估),健康大数据(基于可穿戴传感的老年人跌倒风险评估、防护与预防),人工智能物联网(TinyML/边缘计算)。发表SCI/SSCI/EI论文10余篇(多发表于Applied Ergo, Ergo, IEEE JBHI, Measurement, BSPC等人机交互和健康信息学知名刊物),获得国家留学基金委奖学金,第12届人因应用及其附属国际会议(AHFE2021)最佳学生论文奖。
欢迎对上述领域感兴趣的本科生(SRTP项目,主要是基于ICT和传感技术的大健康、物联网、人机交互等)、硕士生(也欢迎跨专业背景学生:如计算机科学、生物医学、电子工程、机械工程等)加入课题组!
2023年8月至今,东南大学机械工程学院工业设计系讲师
产品设计方法学
用户界面设计
Engineering Applications of Artificial Intelligence
ACM Transactions on Knowledge Discovery from Data
International Journal of Industrial Ergonomics
The International Journal of Automotive Technology
Pervasive and Mobile Computing
Scientific Reports
Frontiers in Aging Neuroscience
国家留学基金委(CSC)奖学金
第12届人因应用及其附属国际会议(AHFE2021):最佳学生论文奖
1. 期刊论文(“*”:通讯作者;“_”:学生)
(13) Yu X, Cai Y, Yang R, Ma F*, Kim W*, 2025. Revisiting sensor-based intelligent fall risk assessment for older people: a systematic review. (In review after 1st round of revisions)
(12) Yu X, Wang C, Wu W, and Xiong S*, 2025. A Real-time Skeleton-based Fall Detection Algorithm based on Temporal Convolutional Networks and Transformer Encoder. Pervasive and Mobile Computing (SCI, JCR: Q2, IF: 3.0)
(11) Yu X, Wan J, An G, Yin X, Xiong S*, 2024. A Novel Semi-supervised Model for Pre-impact Fall Detection with Limited Fall Data. Engineering Applications of Artificial Intelligence, 132, 108469 (SCI, JCR: Q1,IF: 8.0, 中科院Top期刊)
(10) Koo, B., Yu, X., Lee, S., Yang, S., Kim, D., Xiong, S., & Kim, Y. (2023). TinyFallNet: A Lightweight Pre-Impact Fall Detection Model. Sensors, 23(20), 8459 (SCI, JCR: Q2, IF: 3.847)).
(9) Yu X, Park S, Kim D, Kim E, Kim J, KimW, An Y, Xiong S*, 2023. A Practical Wearable Fall Detection System based on Tiny Convolutional Neural Networks. Biomedical Signal Processing and Control, 86, 105325 (SCI, JCR: Q2, IF=5.1).
(8) Kim, T., Yu, X., & Xiong, S.* (2023). Amultifactorial fall risk assessment system for older people utilizing alow-cost, markerless Microsoft Kinect. Ergonomics(SCI, JCR: Q3, IF:2.561).
(7) Yu, X., Park, S., & Xiong, S.*(2023). Trunk Range of Motion: A Wearable Sensor-based Test Protocol andIndicator of Fall Risk in Older People. Applied Ergonomics,108, 103963 (SCI,JCR: Q2, IF: 3.940).
(6) Yu, X., Ma, T., Jang, J., & Xiong,S.* (2022). Data augmentation to address various rotation errors of wearablesensors for robust pre-impact fall detection. IEEE Journal of Biomedical and Health Informatics (SCI, JCR: Q1,IF: 7.021, 中科院Top期刊).
(5) Yu, X., Koo, B., Jang, J., Kim, Y.,& Xiong, S.* (2022). A comprehensive comparison of accuracy andpracticality of different types of algorithms for pre-impact fall detectionusing both young and old adults. Measurement,111785 (SCI, JCR: Q1, IF: 5.131).
(4) Yu, X., Jang, J., & Xiong, S.*(2021). A large-scale open motion dataset (KFall) and benchmark algorithms fordetecting pre-impact fall of the elderly using wearable inertial sensors. Frontiers in Aging Neuroscience, 399 (SCI,JCR: Q1, IF: 5.702).
(3) Yu, X., Qiu, H., & Xiong, S.* (2020).A novel hybrid deep neural network to predict pre-impact fall for older peoplebased on wearable inertial sensors. Frontiersin bioengineering and biotechnology, 8, 63 (SCI, JCR: Q1, IF: 6.064).
(2) Yu, X., & Xiong, S.* (2019). Adynamic time warping based algorithm to evaluate Kinect-enabled home-basedphysical rehabilitation exercises for older people. Sensors, 19(13), 2882 (SCI, JCR: Q2, IF: 3.847).
(1) Qiu, H., Rehman,R. Z. U., Yu, X., & Xiong, S.*(2018). Application of wearable inertial sensors and a new test battery fordistinguishing retrospective fallers from non-fallers among community-dwellingolder people. Scientific reports,8(1), 1-10 (SCI, JCR: Q2, IF: 4.996).
2. 会议论文
(1) Yu X, Jang J, Xiong S*,2021. Machine Learning-based Pre-impact Fall Detection and Injury Preventionfor the Elderly with Wearable Inertial Sensors. AHFE2021. July 25-29, 2021. New York, USA. (Full Paper, 最佳学生论文奖)
(2) Yu X*, Niu Y, Zhou X, Wu W, Xue C, Xiong S, 2024. A skeleton-based real-time fall detection system for older people using a single RGB camera and edge computing. 22nd Triennial Congress of the International Ergonomics Association (IEA), August 25-29, 2024. Jeju, South Korea. (Oral Presentation)
(1)中央高校基本科研业务费,人体行为分析技术,2023-2026,20万,主持,在研
(2)国家辅具中心开放课题,人体行为分析技术,2024-2026,19.5万,主持,在研
(3)福建中医药大学中医骨伤及运动康复教育部重点实验室开放课题,运动康复技术,2024-2026,8万,主持,在研
(4)韩国自然科学基金委青年基金国际合作项目,3D用户界面设计技术,2024-2027,46万(国际合作方经费),主持(牵头人:韩国江原大学Prof. Woojoo Kim),在研
余潇群,男,1993年生,东南大学机械学院工业设计系讲师。研究领域为人机交互(基于IMU和CV的人体姿态/运动评估),健康大数据(基于可穿戴传感的老年人跌倒风险评估、防护与预防),人工智能物联网(TinyML/边缘计算)。发表SCI/SSCI/EI论文10余篇(多发表于Applied Ergo, Ergo, IEEE JBHI, Measurement, BSPC等人机交互和健康信息学知名刊物),获得国家留学基金委奖学金,第12届人因应用及其附属国际会议(AHFE2021)最佳学生论文奖。
欢迎对上述领域感兴趣的本科生(SRTP项目,主要是基于ICT和传感技术的大健康、物联网、人机交互等)、硕士生(也欢迎跨专业背景学生:如计算机科学、生物医学、电子工程、机械工程等)加入课题组!
1. 期刊论文(“*”:通讯作者;“_”:学生)
(13) Yu X, Cai Y, Yang R, Ma F*, Kim W*, 2025. Revisiting sensor-based intelligent fall risk assessment for older people: a systematic review. (In review after 1st round of revisions)
(12) Yu X, Wang C, Wu W, and Xiong S*, 2025. A Real-time Skeleton-based Fall Detection Algorithm based on Temporal Convolutional Networks and Transformer Encoder. Pervasive and Mobile Computing (SCI, JCR: Q2, IF: 3.0)
(11) Yu X, Wan J, An G, Yin X, Xiong S*, 2024. A Novel Semi-supervised Model for Pre-impact Fall Detection with Limited Fall Data. Engineering Applications of Artificial Intelligence, 132, 108469 (SCI, JCR: Q1,IF: 8.0, 中科院Top期刊)
(10) Koo, B., Yu, X., Lee, S., Yang, S., Kim, D., Xiong, S., & Kim, Y. (2023). TinyFallNet: A Lightweight Pre-Impact Fall Detection Model. Sensors, 23(20), 8459 (SCI, JCR: Q2, IF: 3.847)).
(9) Yu X, Park S, Kim D, Kim E, Kim J, KimW, An Y, Xiong S*, 2023. A Practical Wearable Fall Detection System based on Tiny Convolutional Neural Networks. Biomedical Signal Processing and Control, 86, 105325 (SCI, JCR: Q2, IF=5.1).
(8) Kim, T., Yu, X., & Xiong, S.* (2023). Amultifactorial fall risk assessment system for older people utilizing alow-cost, markerless Microsoft Kinect. Ergonomics(SCI, JCR: Q3, IF:2.561).
(7) Yu, X., Park, S., & Xiong, S.*(2023). Trunk Range of Motion: A Wearable Sensor-based Test Protocol andIndicator of Fall Risk in Older People. Applied Ergonomics,108, 103963 (SCI,JCR: Q2, IF: 3.940).
(6) Yu, X., Ma, T., Jang, J., & Xiong,S.* (2022). Data augmentation to address various rotation errors of wearablesensors for robust pre-impact fall detection. IEEE Journal of Biomedical and Health Informatics (SCI, JCR: Q1,IF: 7.021, 中科院Top期刊).
(5) Yu, X., Koo, B., Jang, J., Kim, Y.,& Xiong, S.* (2022). A comprehensive comparison of accuracy andpracticality of different types of algorithms for pre-impact fall detectionusing both young and old adults. Measurement,111785 (SCI, JCR: Q1, IF: 5.131).
(4) Yu, X., Jang, J., & Xiong, S.*(2021). A large-scale open motion dataset (KFall) and benchmark algorithms fordetecting pre-impact fall of the elderly using wearable inertial sensors. Frontiers in Aging Neuroscience, 399 (SCI,JCR: Q1, IF: 5.702).
(3) Yu, X., Qiu, H., & Xiong, S.* (2020).A novel hybrid deep neural network to predict pre-impact fall for older peoplebased on wearable inertial sensors. Frontiersin bioengineering and biotechnology, 8, 63 (SCI, JCR: Q1, IF: 6.064).
(2) Yu, X., & Xiong, S.* (2019). Adynamic time warping based algorithm to evaluate Kinect-enabled home-basedphysical rehabilitation exercises for older people. Sensors, 19(13), 2882 (SCI, JCR: Q2, IF: 3.847).
(1) Qiu, H., Rehman,R. Z. U., Yu, X., & Xiong, S.*(2018). Application of wearable inertial sensors and a new test battery fordistinguishing retrospective fallers from non-fallers among community-dwellingolder people. Scientific reports,8(1), 1-10 (SCI, JCR: Q2, IF: 4.996).
2. 会议论文
(1) Yu X, Jang J, Xiong S*,2021. Machine Learning-based Pre-impact Fall Detection and Injury Preventionfor the Elderly with Wearable Inertial Sensors. AHFE2021. July 25-29, 2021. New York, USA. (Full Paper, 最佳学生论文奖)
(2) Yu X*, Niu Y, Zhou X, Wu W, Xue C, Xiong S, 2024. A skeleton-based real-time fall detection system for older people using a single RGB camera and edge computing. 22nd Triennial Congress of the International Ergonomics Association (IEA), August 25-29, 2024. Jeju, South Korea. (Oral Presentation)
(1)中央高校基本科研业务费,人体行为分析技术,2023-2026,20万,主持,在研
(2)国家辅具中心开放课题,人体行为分析技术,2024-2026,19.5万,主持,在研
(3)福建中医药大学中医骨伤及运动康复教育部重点实验室开放课题,运动康复技术,2024-2026,8万,主持,在研
(4)韩国自然科学基金委青年基金国际合作项目,3D用户界面设计技术,2024-2027,46万(国际合作方经费),主持(牵头人:韩国江原大学Prof. Woojoo Kim),在研