教师名录

贺东副研究员硕士生导师
所在院系:智能制造系
办公室:机械楼357
电话:
邮箱:hedong@seu.edu.cn
个人简介
学习经历
工作经历

2025年-至今,东南大学,机械工程学院智能制造系,上岗副研究员

2022年-2024年,香港科技大学,工程学院机械工程系,博士后

2018年-2019年,中国科学院深圳先进技术研究院,生物医学工程研究所,研究助理

教授课程
研究方向
增减材制造智能化;复杂曲面多轴加工;多轴激光增材制造路径规划;面向PINN的加工规划
审稿期刊

Computer-Aided Design, Additive Manufacturing,Journal of Manufacturing Processes,Journal of Manufacturing Systems, Robotics and Computer-Integrated Manufacturing,IEEE Transactions on Signal Processing


学术兼职
获奖情况

[2] 扭曲金属零件的五轴定向能量沉积保速运动规划, 2023年第11届国际数控加工研讨会, 最佳报告奖

[1] HKUST RedBird Academic Excellence Award, 香港科技大学, 2022

论文著作

最新论文见Google Scholar

https://scholar.google.com/citations?user=hHxsez8AAAAJ&hl=zh-CN


[25] He D, Deng X, Chen Y, Zhang W, Hao J, Hu P, Chen L, Lee YK, Tang K. Feedrate-preserved motion planning for five-axis directed energy deposition of freeform metal parts[J]. Additive Manufacturing, 2024, 89: 104302.[Link]

[24] Chen Y1, He D1, Hao J, Deng X, Zhang W, Fu Z, Wang Y, Chen L, Hu P, Tang K. Five-axis hybrid manufacturing with DED and milling for complex multi-branched metallic parts[J]. International Journal of Computer Integrated Manufacturing, 2025: 1-30.[Link]

[23] He D, Li X, Li Z, Xie J, Hao J, Lee YK, Hu P, Tang K. Iso-force rough machining of freeform deep cavities based on volumetric fields[J]. Journal of Manufacturing Processes, 2024, 131: 1970-1986.[Link]

[22] He D, Li Z, Li X, Li Y, Tang K. Collision-conscious multi-pass flank milling of complicated parts based on stripification[J]. Computer-Aided Design, 2023, 157: 103469.[Link]

[21] He D, Li Z, Li Y, Tang K. Quasi-developable and signed multi-strip approximation of a freeform surface mesh for efficient flank milling[J]. Computer-Aided Design, 2021, 140: 103083.[Link]

[20] He D, Li Y, Li Z, Tang K. Geodesic distance field-based process planning for five-axis machining of complicated parts[J]. Journal of Manufacturing Science and Engineering, 2021, 143(6): 61009.[Link]

[19] He D, Cao H. Downsampling-based synchrosqueezing transform and its applications on large-scale vibration data[J]. Journal of Sound and Vibration, 2021, 496: 115938.[Link]

[18] He D, Cao H, Wang S, Chen X. Time-reassigned synchrosqueezing transform: the algorithm and its applications in mechanical signal processing[J]. Mechanical Systems and Signal Processing, 2019, 117: 255-279.(“ESI高被引”)[Link]

[18] Deng X, Hu P, Li Z, Zhang W, He D, Chen Y. Reinforcement Learning-based five-axis continuous inspection method for complex freeform surface[J]. Robotics and Computer-Integrated Manufacturing, 2025, 94: 102990.[Link]

[17] Xu S, Liu J, He D, Tang K, Yaji K. Self-support structure topology optimization for multi-axis additive manufacturing incorporated with curved layer slicing[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 438: 117841.[Link]

[16] Wang N, Li Y, Liu C, Zhao Z, He D, Tang K. Parameter optimization of ultrasonic impact for deformation control based on dual information neural network[J]. Journal of Manufacturing Processes, 2025, 137: 113-124.[Link]

[15] Ding Y, Li Z, He D, Tang K, Hu P. Geodesic distance field-based five-axis continuous sweep scanning method for the multi-entrance inwall surface[J]. IEEE Transactions on Automation Science and Engineering, 2025.[Link]

[14] Deng X, Hu P, Li Z, Zhang W, He D, Chen Y. Reinforcement learning-based five-axis continuous inspection method for complex freeform surface[J]. Robotics and Computer-Integrated Manufacturing, 2025, 94: 102990.[Link]

[13] Li X, Li Z, He D, Ren J, Feng Q, Tang K. Efficient machining of a complex blisk channel using a disc cutter[J]. Chinese Journal of Aeronautics, 2024, 37(1): 414-437.[Link]

[12] Li Z, He D, Li X, Deng X, Hu P, Hao J, Hou Y, Yu H, Tang K. Efficient five-axis scanning-inspection path planning for complex freeform surfaces[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102687.[Link]

[11] Hao J, He D, Li Z, Hu P, Chen Y, Tang K. Efficient cutting path planning for a non-spherical tool based on an iso-scallop height distance field[J]. Chinese Journal of Aeronautics, 2024, 37(7): 496-510.[Link]

[10] Lau TY, Chen L, He D, Li Z, Tang K. Partition-based print sequence planning and adaptive slicing for scalar field-based multi-axis additive manufacturing[J]. Computer-Aided Design, 2023, 163: 103576.[Link]

[9] Wang E, Hao X, He D, Tang K. Physical prior and tikhonov regularization based residual stress inference method for annular parts using deformation force[J]. Journal of Advanced Manufacturing Science and Technology, 2023, 3(3).[Link]

[8] Zhao Y, Liu C, Zhao Z, Tang K, He D. Reinforcement learning method for machining deformation control based on meta-invariant feature space[J]. Visual Computing for Industry, Biomedicine, and Art, 2022, 5(1): 27.[Link]

[7] Xie F, Jing X, Zhang C, Chen S, Bi D, Li Z, He D, Tang K. Volume decomposition for multi-axis support-free and gouging-free printing based on ellipsoidal slicing[J]. Computer-Aided Design, 2022, 143: 103135.[Link]

[6] Lu X, Zhou Y, He D, Zheng F, Tang K, Tang J. A novel two-variable optimization algorithm of TCA for the design of face gear drives[J]. Mechanism and Machine Theory, 2022, 175: 104960.[Link]

[5] Li Z, He D, Xu K, Xie F, Tang K. Kinematics-based five-axis trochoidal milling process planning for deep and curved three-dimensional slots[J]. Journal of Manufacturing Science and Engineering, 2022, 144(2): 21005.[Link]

[4] Li Y, He D, Yuan S, Tang K, Zhu J. Vector field-based curved layer slicing and path planning for multi-axis printing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102362.[Link]

[3] Hao J, Li Z, Li X, Xie F, He D, Tang K. Partition-based 3+ 2-axis tool path generation for freeform surface machining using a non-spherical tool[J]. Journal of Computational Design and Engineering, 2022, 9(5): 1585-1601.[Link]

[2] Li Y, Tang K, He D, Wang X. Multi-axis support-free printing of freeform parts with lattice infill structures[J]. Computer-Aided Design, 2021, 133: 102986.[Link]

[1] Cao H, He D, Xi S, Chen X. Vibration signal correction of unbalanced rotor due to angular speed fluctuation[J]. Mechanical Systems and Signal Processing, 2018, 107: 202-220.[Link]


科研项目
序号项目名称项目来源角色周期
4考虑变形抑制的复杂曲面零件增减材制造工艺规划研究东南大学新进教师科研启动经费主持2025-2028
3面向金属增减材混合制造的复杂腔体零件工艺规划国家自然科学基金面上项目

核心

骨干

2024-2028
2金属多轴增减材复合加工中心软硬件平台的研发/多轴增减材复合加工工艺规划/仿真系统的研究与开发佛山-科大专项校企合作研发项目

核心

骨干

2021-2024
1汽车轮毂制造智能CAM系统香港特区创新科技署创新基金

核心

骨干

2020-2021


专利

授权专利:

[4] 曹宏瑞,王翔生,贺东,陈雪峰. 同步压缩变换与重构的快速计算方法,ZL201910228096X, 2020

[3] 曹宏瑞,贺东,陈雪峰,訾艳阳,席松涛. 基于时间重排压缩变换的冲击类信号时频分析与重构方法, ZL2017107656034, 2020

[2] 曹宏瑞,贺东,周凯,陈雪峰,訾艳阳,张兴武. 一种基于 AR 模型的高速铣削颤振在线辨识方法, ZL2016105609053, 2018

[1] 曹宏瑞,贺东,周凯,陈雪峰,訾艳阳,张兴武. 一种基于 3σ 准则的铣削颤振自动报警阈值设定方法, ZL2016105613398, 2018


软件著作权:

[2] 贺东; 汤凯; 郝健程; 陈远志; 邓肖柯; 张文泽; 王诣赫; 傅子川 ; 五轴金属定向能量沉积路径规划平台 [简称:五轴DED] V1.0, 2024SR1141902, 原始取得, 全部权利, 2024-8-7 (软件著作权)

[1] 郝健程; 汤凯; 胡鹏程; 贺东; 张文泽; 王诣赫; 邓肖柯; 陈远志; 傅子川 ; 定制化刀具的智能减材系统 V1.0, 2024SR1148108, 原始取得, 全部权利, 2024-8-8 (软件著作权) 


贺东 轴增减材制造的智能规划
Tel:
Email:hedong@seu.edu.cn
Add:
Personal Introduction
Educational Background

最新论文见Google Scholar

https://scholar.google.com/citations?user=hHxsez8AAAAJ&hl=zh-CN


[25] He D, Deng X, Chen Y, Zhang W, Hao J, Hu P, Chen L, Lee YK, Tang K. Feedrate-preserved motion planning for five-axis directed energy deposition of freeform metal parts[J]. Additive Manufacturing, 2024, 89: 104302.[Link]

[24] Chen Y1, He D1, Hao J, Deng X, Zhang W, Fu Z, Wang Y, Chen L, Hu P, Tang K. Five-axis hybrid manufacturing with DED and milling for complex multi-branched metallic parts[J]. International Journal of Computer Integrated Manufacturing, 2025: 1-30.[Link]

[23] He D, Li X, Li Z, Xie J, Hao J, Lee YK, Hu P, Tang K. Iso-force rough machining of freeform deep cavities based on volumetric fields[J]. Journal of Manufacturing Processes, 2024, 131: 1970-1986.[Link]

[22] He D, Li Z, Li X, Li Y, Tang K. Collision-conscious multi-pass flank milling of complicated parts based on stripification[J]. Computer-Aided Design, 2023, 157: 103469.[Link]

[21] He D, Li Z, Li Y, Tang K. Quasi-developable and signed multi-strip approximation of a freeform surface mesh for efficient flank milling[J]. Computer-Aided Design, 2021, 140: 103083.[Link]

[20] He D, Li Y, Li Z, Tang K. Geodesic distance field-based process planning for five-axis machining of complicated parts[J]. Journal of Manufacturing Science and Engineering, 2021, 143(6): 61009.[Link]

[19] He D, Cao H. Downsampling-based synchrosqueezing transform and its applications on large-scale vibration data[J]. Journal of Sound and Vibration, 2021, 496: 115938.[Link]

[18] He D, Cao H, Wang S, Chen X. Time-reassigned synchrosqueezing transform: the algorithm and its applications in mechanical signal processing[J]. Mechanical Systems and Signal Processing, 2019, 117: 255-279.(“ESI高被引”)[Link]

[18] Deng X, Hu P, Li Z, Zhang W, He D, Chen Y. Reinforcement Learning-based five-axis continuous inspection method for complex freeform surface[J]. Robotics and Computer-Integrated Manufacturing, 2025, 94: 102990.[Link]

[17] Xu S, Liu J, He D, Tang K, Yaji K. Self-support structure topology optimization for multi-axis additive manufacturing incorporated with curved layer slicing[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 438: 117841.[Link]

[16] Wang N, Li Y, Liu C, Zhao Z, He D, Tang K. Parameter optimization of ultrasonic impact for deformation control based on dual information neural network[J]. Journal of Manufacturing Processes, 2025, 137: 113-124.[Link]

[15] Ding Y, Li Z, He D, Tang K, Hu P. Geodesic distance field-based five-axis continuous sweep scanning method for the multi-entrance inwall surface[J]. IEEE Transactions on Automation Science and Engineering, 2025.[Link]

[14] Deng X, Hu P, Li Z, Zhang W, He D, Chen Y. Reinforcement learning-based five-axis continuous inspection method for complex freeform surface[J]. Robotics and Computer-Integrated Manufacturing, 2025, 94: 102990.[Link]

[13] Li X, Li Z, He D, Ren J, Feng Q, Tang K. Efficient machining of a complex blisk channel using a disc cutter[J]. Chinese Journal of Aeronautics, 2024, 37(1): 414-437.[Link]

[12] Li Z, He D, Li X, Deng X, Hu P, Hao J, Hou Y, Yu H, Tang K. Efficient five-axis scanning-inspection path planning for complex freeform surfaces[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102687.[Link]

[11] Hao J, He D, Li Z, Hu P, Chen Y, Tang K. Efficient cutting path planning for a non-spherical tool based on an iso-scallop height distance field[J]. Chinese Journal of Aeronautics, 2024, 37(7): 496-510.[Link]

[10] Lau TY, Chen L, He D, Li Z, Tang K. Partition-based print sequence planning and adaptive slicing for scalar field-based multi-axis additive manufacturing[J]. Computer-Aided Design, 2023, 163: 103576.[Link]

[9] Wang E, Hao X, He D, Tang K. Physical prior and tikhonov regularization based residual stress inference method for annular parts using deformation force[J]. Journal of Advanced Manufacturing Science and Technology, 2023, 3(3).[Link]

[8] Zhao Y, Liu C, Zhao Z, Tang K, He D. Reinforcement learning method for machining deformation control based on meta-invariant feature space[J]. Visual Computing for Industry, Biomedicine, and Art, 2022, 5(1): 27.[Link]

[7] Xie F, Jing X, Zhang C, Chen S, Bi D, Li Z, He D, Tang K. Volume decomposition for multi-axis support-free and gouging-free printing based on ellipsoidal slicing[J]. Computer-Aided Design, 2022, 143: 103135.[Link]

[6] Lu X, Zhou Y, He D, Zheng F, Tang K, Tang J. A novel two-variable optimization algorithm of TCA for the design of face gear drives[J]. Mechanism and Machine Theory, 2022, 175: 104960.[Link]

[5] Li Z, He D, Xu K, Xie F, Tang K. Kinematics-based five-axis trochoidal milling process planning for deep and curved three-dimensional slots[J]. Journal of Manufacturing Science and Engineering, 2022, 144(2): 21005.[Link]

[4] Li Y, He D, Yuan S, Tang K, Zhu J. Vector field-based curved layer slicing and path planning for multi-axis printing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102362.[Link]

[3] Hao J, Li Z, Li X, Xie F, He D, Tang K. Partition-based 3+ 2-axis tool path generation for freeform surface machining using a non-spherical tool[J]. Journal of Computational Design and Engineering, 2022, 9(5): 1585-1601.[Link]

[2] Li Y, Tang K, He D, Wang X. Multi-axis support-free printing of freeform parts with lattice infill structures[J]. Computer-Aided Design, 2021, 133: 102986.[Link]

[1] Cao H, He D, Xi S, Chen X. Vibration signal correction of unbalanced rotor due to angular speed fluctuation[J]. Mechanical Systems and Signal Processing, 2018, 107: 202-220.[Link]


Professional Experience
Teaching
序号项目名称项目来源角色周期
4考虑变形抑制的复杂曲面零件增减材制造工艺规划研究东南大学新进教师科研启动经费主持2025-2028
3面向金属增减材混合制造的复杂腔体零件工艺规划国家自然科学基金面上项目

核心

骨干

2024-2028
2金属多轴增减材复合加工中心软硬件平台的研发/多轴增减材复合加工工艺规划/仿真系统的研究与开发佛山-科大专项校企合作研发项目

核心

骨干

2021-2024
1汽车轮毂制造智能CAM系统香港特区创新科技署创新基金

核心

骨干

2020-2021


Research Interests

授权专利:

[4] 曹宏瑞,王翔生,贺东,陈雪峰. 同步压缩变换与重构的快速计算方法,ZL201910228096X, 2020

[3] 曹宏瑞,贺东,陈雪峰,訾艳阳,席松涛. 基于时间重排压缩变换的冲击类信号时频分析与重构方法, ZL2017107656034, 2020

[2] 曹宏瑞,贺东,周凯,陈雪峰,訾艳阳,张兴武. 一种基于 AR 模型的高速铣削颤振在线辨识方法, ZL2016105609053, 2018

[1] 曹宏瑞,贺东,周凯,陈雪峰,訾艳阳,张兴武. 一种基于 3σ 准则的铣削颤振自动报警阈值设定方法, ZL2016105613398, 2018


软件著作权:

[2] 贺东; 汤凯; 郝健程; 陈远志; 邓肖柯; 张文泽; 王诣赫; 傅子川 ; 五轴金属定向能量沉积路径规划平台 [简称:五轴DED] V1.0, 2024SR1141902, 原始取得, 全部权利, 2024-8-7 (软件著作权)

[1] 郝健程; 汤凯; 胡鹏程; 贺东; 张文泽; 王诣赫; 邓肖柯; 陈远志; 傅子川 ; 定制化刀具的智能减材系统 V1.0, 2024SR1148108, 原始取得, 全部权利, 2024-8-8 (软件著作权) 


Refereed Journals
Other Professional Activities
Selected Publications
Research Projects
Patents and Applications