教师名录

陈云飞教授博士生导师
所在院系:机械设计工程系
办公室:机械楼432
电话:086-25-52090518
邮箱:yunfeichen@seu.edu.cn
个人简介

2009年度国家杰出青年科学基金获得者,教育部长江学者奖励计划特聘教授,入选江苏省“333高层次人才培养工程第一层次研究领域涵盖摩擦学、传热学、流体动力学以及它们在先进设备和系统工程中的实际应用,包括高速列车、DNA 和蛋白质测序设备以及能源转换和利用设备。陈云飞开创了直接观察摩擦激励声子的方法,发现摩擦激励声子频率集中在搓板频率及其倍频。这一发现揭示了摩擦力对速度非单调依赖、各向异性摩擦力和摩擦力波动的微观机理。陈云飞创建了基于声子摩擦耗能理论,实现了对摩擦力、摩擦诱导振动和噪声的准确预测。系列研究成果发表在NatureScience, Nature Communication, PRL, PNAS, JACS等期刊,被国际同行他引7000多次,作为第一完成人获得国家自然科学二等奖1项,教育部自然科学一等奖1项。


Google scholar:

https://scholar.google.com.hk/citations?hl=zh-CN&user=_obvpHQAAAAJ&view_op=list_works&sortby=pubdate


 ORCID 

https://orcid.org/0000-0002-8682-868X

学习经历
工作经历

20031-迄今,东南大学,机械学院,教授

20077-200712月,美国加州大学,圣巴巴拉分校,访问学者

200210-200211月,瑞士苏黎世高工(ETH),访问学者

200101-200203月,美国加州大学伯克利分校,机械系,Arun Majumdar实验室,Postdoctoral Research

200009-200101月,美国加州大学伯克利分校,机械系,田长霖实验室,Postdoctoral Research

1998-2002年,东南大学,机械工程系,副教授

1995-1998年,东南大学,机械工程系,讲师


教授课程

1、《微纳流体动力学》;研究生、博士生课程,讨论离子通道、离子输运和分子间作用力;

2、《微纳机电系统》;研究生、博士生课程,讨论微纳制造方法,创新设计微纳器件;

3、《设计原理与方法》;本科生课程,讨论创新设计;

4、《机械导论》;大一课程,帮助新生了解专业。

研究方向
1、微纳制造:研制基于纳米孔流体传感器,实现单分子检测,应用于疾病早期检测和基因测序。 2、微尺度传热:针对高功率芯片、CPU、航空发动机的热防护问题,开展流体动力学和传热、传质基础理论研究和热界面材料研发。 3、摩擦学:航空发动机、飞行器的摩擦学问题研究。 4、增材制造:光、机、电一体化设计,实现微纳结构增材制造。 5、机械动力学:开展机构、结构动力学分析及结构优化设计。
审稿期刊

东南大学学报;

Nano Letters



学术兼职

中国机械工程学会,微纳米制造分会,副主任委员;

中国机械工程学会,极端制造分会,理事。

获奖情况

1、国家自然科学二等奖,摩擦界面的声子传递理论与能量耗散模型,2018

2、教育部自然科学一等奖,能量在多层膜界面耗散与输运机理,2015

3、江苏省科技进步一等奖,微纳医疗器件设计理论与制造,2008

4、教育部三等奖,机械设计CAI1998


论文著作

1.Zhao, W., et al., The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS2 Monolayers. Advanced Functional Materials, 2021.

2.Zhang, X., et al., A general strategy for designing two-dimensional high-efficiency layered thermoelectric materials. Energy & Environmental Science, 2021. 14(7): p. 4059-4066.

3.Yang, L., et al., Observation of superdiffusive phonon transport in aligned atomic chains. Nature Nanotechnology, 2021. 16(7): p. 764-+.

4.Tao, Y., et al., Non-monotonic boundary resistivity for electron transport in metal nanowires. Applied Physics Letters, 2021. 118(15).

5.Qi, H., et al., Synergic Effects of the Nanopore Size and Surface Charge on the Ion Selectivity of Graphene Membranes. Journal of Physical Chemistry C, 2021. 125(1): p. 507-514.

6.Lyu, Z., et al., Design and Manufacture of 3D-Printed Batteries. Joule, 2021. 5(1): p. 89-114.

7.Duan, Z., et al., Resonance in Atomic-Scale Sliding Friction. Nano Letters, 2021. 21(11): p. 4615-4621.

8.Zheng, F., et al., Ion Concentration Effect on Nanoscale Electrospray Modes. Small, 2020. 16(24).

9.Zhao, Y., et al., Experimental measurement of thermal conductivity along different crystallographic planes in graphite. Journal of Applied Physics, 2020. 128(4).

10.Zhang, Y., et al., Electroosmotic Facilitated Protein Capture and Transport through Solid-State Nanopores with Diameter Larger than Length. Small Methods, 2020. 4(11).

11.Zhang, X.W., et al., High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Band-Extrema Alignment. Advanced Functional Materials, 2020. 30(22).

12.Wu, C., et al., Anomalous layer thickness dependent thermal conductivity of Td-WTe2 through first-principles calculation. Physics Letters A, 2020. 384(30).

13.Wei, Z.Y., et al., Significant enhancement of thermal boundary conductance in graphite/Al interface by ion intercalation. International Journal of Heat and Mass Transfer, 2020. 157.

14.Wei, Z.Y., et al., Phonon energy dissipation in friction between graphene/graphene interface. Journal of Applied Physics, 2020. 127(1).

15.Tao, Y., et al., The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam. Nanoscale, 2020. 12(27): p. 14838-14846.

16.Tao, Y., et al., Theory of aerodynamic heating from molecular collision analysis. Physics Letters A, 2020. 384(4).

17.Tan, X. and J. Luo, Research Advances of Lubrication. China Mechanical Engineering, 2020. 31(2): p. 145.

18.Si, W., et al., Detergent-Assisted Braking of Peptide Translocation through a Single-Layer Molybdenum Disulfide Nanopore. Small Methods, 2020. 4(11).

19.Si, W., et al., Shape characterization and discrimination of single nanoparticles using solid-state nanopores. Analyst, 2020. 145(5): p. 1657-1666.

20.Mo, J.W., et al., Fluid release pressure for micro-/nanoscale rectangular channels. Journal of Applied Physics, 2020. 127(11).

21.Luo, J., Investigation on the origin of friction and superlubricity. Chinese Science Bulletin, 2020. 65(27): p. 2967-2978.

22.Lin, K.B., et al., Charge Inversion and Calcium Gating in Mixtures of Ions in Nanopores. Journal of the American Chemical Society, 2020. 142(6): p. 2925-2934.

23.Li, Z.W., et al., Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins. Acs Nano, 2020. 14(5): p. 6269-6275.

24.Li, Y.H., et al., Water-ion permselectivity of narrow-diameter carbon nanotubes. Science Advances, 2020. 6(38).

25.Kan, Y.J., et al., Diminishing Cohesion of Chitosan Films in Acidic Solution by Multivalent Metal Cations. Langmuir, 2020. 36(18): p. 4964-4974.


科研项目

项目名称

项目类别

项目时间

工作类别

项目金额

微纳传感与控制

国家杰出青年科学基金

2009-2013


200

纳通道内生物分子电信号超灵敏检测方法与原理

国家重大基础研究计划(973

2011-2015


810

基于多模式信号检测的超灵敏传感器的基础理论与关键技术

国家自然科学基金重点项目

2015-2019


360

家用电器结构优化设计

博西华家用电器公司企业委托项目

2013-2017


270

微纳结构增材制造工艺与装备

国家重点研发计划

2018-2021


450

蛋白质芯片设计与制造国家自然基金重点项目2021-2025
300


专利
陈云飞 微纳制造;摩擦学;医疗器械;光机电装备
Tel:
Email:yunfeichen@seu.edu.cn
Add:
Personal Introduction

2009年度国家杰出青年科学基金获得者,教育部长江学者奖励计划特聘教授,入选江苏省“333高层次人才培养工程第一层次研究领域涵盖摩擦学、传热学、流体动力学以及它们在先进设备和系统工程中的实际应用,包括高速列车、DNA 和蛋白质测序设备以及能源转换和利用设备。陈云飞开创了直接观察摩擦激励声子的方法,发现摩擦激励声子频率集中在搓板频率及其倍频。这一发现揭示了摩擦力对速度非单调依赖、各向异性摩擦力和摩擦力波动的微观机理。陈云飞创建了基于声子摩擦耗能理论,实现了对摩擦力、摩擦诱导振动和噪声的准确预测。系列研究成果发表在NatureScience, Nature Communication, PRL, PNAS, JACS等期刊,被国际同行他引7000多次,作为第一完成人获得国家自然科学二等奖1项,教育部自然科学一等奖1项。


Google scholar:

https://scholar.google.com.hk/citations?hl=zh-CN&user=_obvpHQAAAAJ&view_op=list_works&sortby=pubdate


 ORCID 

https://orcid.org/0000-0002-8682-868X

Educational Background

1.Zhao, W., et al., The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS2 Monolayers. Advanced Functional Materials, 2021.

2.Zhang, X., et al., A general strategy for designing two-dimensional high-efficiency layered thermoelectric materials. Energy & Environmental Science, 2021. 14(7): p. 4059-4066.

3.Yang, L., et al., Observation of superdiffusive phonon transport in aligned atomic chains. Nature Nanotechnology, 2021. 16(7): p. 764-+.

4.Tao, Y., et al., Non-monotonic boundary resistivity for electron transport in metal nanowires. Applied Physics Letters, 2021. 118(15).

5.Qi, H., et al., Synergic Effects of the Nanopore Size and Surface Charge on the Ion Selectivity of Graphene Membranes. Journal of Physical Chemistry C, 2021. 125(1): p. 507-514.

6.Lyu, Z., et al., Design and Manufacture of 3D-Printed Batteries. Joule, 2021. 5(1): p. 89-114.

7.Duan, Z., et al., Resonance in Atomic-Scale Sliding Friction. Nano Letters, 2021. 21(11): p. 4615-4621.

8.Zheng, F., et al., Ion Concentration Effect on Nanoscale Electrospray Modes. Small, 2020. 16(24).

9.Zhao, Y., et al., Experimental measurement of thermal conductivity along different crystallographic planes in graphite. Journal of Applied Physics, 2020. 128(4).

10.Zhang, Y., et al., Electroosmotic Facilitated Protein Capture and Transport through Solid-State Nanopores with Diameter Larger than Length. Small Methods, 2020. 4(11).

11.Zhang, X.W., et al., High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Band-Extrema Alignment. Advanced Functional Materials, 2020. 30(22).

12.Wu, C., et al., Anomalous layer thickness dependent thermal conductivity of Td-WTe2 through first-principles calculation. Physics Letters A, 2020. 384(30).

13.Wei, Z.Y., et al., Significant enhancement of thermal boundary conductance in graphite/Al interface by ion intercalation. International Journal of Heat and Mass Transfer, 2020. 157.

14.Wei, Z.Y., et al., Phonon energy dissipation in friction between graphene/graphene interface. Journal of Applied Physics, 2020. 127(1).

15.Tao, Y., et al., The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam. Nanoscale, 2020. 12(27): p. 14838-14846.

16.Tao, Y., et al., Theory of aerodynamic heating from molecular collision analysis. Physics Letters A, 2020. 384(4).

17.Tan, X. and J. Luo, Research Advances of Lubrication. China Mechanical Engineering, 2020. 31(2): p. 145.

18.Si, W., et al., Detergent-Assisted Braking of Peptide Translocation through a Single-Layer Molybdenum Disulfide Nanopore. Small Methods, 2020. 4(11).

19.Si, W., et al., Shape characterization and discrimination of single nanoparticles using solid-state nanopores. Analyst, 2020. 145(5): p. 1657-1666.

20.Mo, J.W., et al., Fluid release pressure for micro-/nanoscale rectangular channels. Journal of Applied Physics, 2020. 127(11).

21.Luo, J., Investigation on the origin of friction and superlubricity. Chinese Science Bulletin, 2020. 65(27): p. 2967-2978.

22.Lin, K.B., et al., Charge Inversion and Calcium Gating in Mixtures of Ions in Nanopores. Journal of the American Chemical Society, 2020. 142(6): p. 2925-2934.

23.Li, Z.W., et al., Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins. Acs Nano, 2020. 14(5): p. 6269-6275.

24.Li, Y.H., et al., Water-ion permselectivity of narrow-diameter carbon nanotubes. Science Advances, 2020. 6(38).

25.Kan, Y.J., et al., Diminishing Cohesion of Chitosan Films in Acidic Solution by Multivalent Metal Cations. Langmuir, 2020. 36(18): p. 4964-4974.


Professional Experience

中国机械工程学会,微纳米制造分会,副主任委员;

中国机械工程学会,极端制造分会,理事。

Teaching

项目名称

项目类别

项目时间

工作类别

项目金额

微纳传感与控制

国家杰出青年科学基金

2009-2013


200

纳通道内生物分子电信号超灵敏检测方法与原理

国家重大基础研究计划(973

2011-2015


810

基于多模式信号检测的超灵敏传感器的基础理论与关键技术

国家自然科学基金重点项目

2015-2019


360

家用电器结构优化设计

博西华家用电器公司企业委托项目

2013-2017


270

微纳结构增材制造工艺与装备

国家重点研发计划

2018-2021


450

蛋白质芯片设计与制造国家自然基金重点项目2021-2025
300


Research Interests
Refereed Journals
Other Professional Activities
Selected Publications
Research Projects
Patents and Applications