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a b s t r a c t 

A dynamic sensitivity-based model updating approach by using the time-domain responses is proposed in this 

paper. The sensitivity analysis of time-domain response is derived by using the direct differentiation method. The 

objective function of the nonlinear model updating is constructed by minimizing the discrepancy between the 

measured and the calculated time-domain responses. The time-domain responses and the corresponding dynamic 

sensitivities are calculated synchronously. The repeated nonlinear dynamic analysis can be avoided to obtain 

dynamic sensitivity, which is independent of the perturbation step. Numerical examples of a Duffing-Van der 

Pol oscillator, a magnetometer boom, and a cantilever plate with multiple nonlinear supports are adopted to 

verify the method. Crucial issues about the measured noise and the selection of the targeted responses are also 

considered and discussed. The validation results show that the proposed method is effectively applied to model 

updating of nonlinear structure using time-domain response with good anti-noise performance, and the scheme 

for response points selection is reliable for guaranteeing the accuracy. 
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. Introduction 

The finite element (FE) method has been widely applied in engineer-
ng, and many methods have been developed to improve the accuracy
f the FE model [1–3] . Model updating is considered as the feasible
pproach for obtaining an updated model that accurately reflects struc-
ural responses under the linear hypothesis [4–6] . However, nonlineari-
ies are widespread exist and cannot be neglected in practical structures
7-9] . To obtain a more accurate mathematical model to predict the
onlinear dynamic responses, therefore, the structural dynamic model
pdating methods for nonlinear structures have attracted attention. 

In the conventional linear model updating methods, modal frequen-
ies and mode shapes are considered as the output residuals to update
he FE model [10–12] . However, these output residuals are not appro-
riate for the nonlinear dynamic behavior, since the nonlinear charac-
eristics of the structures are difficult to be reflected from these outputs.
wins et al. [13–15] proposed a ‘modal test + ’ procedure for model vali-
ation of nonlinear engineering structures; the residual in the updating
rocess was constructed using the nonlinear frequency response func-
ion. Wang et al. [16] presented a model updating strategy for structures
ith local nonlinearity, and nonlinear model updating was carried out
fter the underlying linear structure was updated. Similar to the ‘modal
est + ’ approach, the frequency domain responses were considered as
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he compared outputs. Asgarieh et al. [17] and Wang et al. [18 , 19] pro-
osed a nonlinear model updating method based on the instantaneous
odal parameters of the decomposed time-domain responses. Recently,
ith the application of the nonlinear normal modes (NNM) to structural
ynamics, the NNM based nonlinear structural model updating meth-
ds [20–23] were presented and applied to the ECL [23] and Round
obin [20 , 21] benchmark problems. Silva et al. [24] and Asgarieh et al.
25] compared the frequency-domain and time-domain updating meth-
ds for nonlinear model updating. These different residuals, such as fre-
uency response, nonlinear force, and time-varying instantaneous pa-
ameters, were proven to be successfully used for nonlinear updating.
he time-domain responses contained the full effects of the nonlinearity

n the structures are considered to construct the output residuals, which
re requested to be minimized in the nonlinear model updating process.

The time-domain responses can be computed using different meth-
ds [26–29] . The effects of the nonlinear structural parameters on the
ime-domain responses are evaluated using the sensitivity analysis meth-
ds. Depending on whether the sensitivity is used, the model updating
ethods can be classified into gradient and non-gradient based algo-

ithms. Song et al. [23] applied the interior point optimization algo-
ithm, which does not require the gradients of the objective function
o the updating parameters. In recent years, the intelligence-like algo-
ithms [25 , 30 , 31] were successfully demonstrated to the non-gradient
ay 2020 
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ased nonlinear model updating method. Chisari et al. [32] proposed a
enetic algorithm-based identification method to a based-isolated con-
rete bridge using the past dynamic and static test measurements. How-
ver, due to the global search, the whole updating procedure was often
ime-consuming. The sensitivity-based model updating methods were
ffective to the FE model updating but most of these applications are
n the linear structures [33–36] . Ebrahimian et al. [37] proposed a
ramework for damage identification using the batch Bayesian estima-
ion based nonlinear finite element updating approaches. The nonlinear
ynamic behavior of the assembled structures is affected by the connec-
ions, and the structural model should be accurately updated using an
ffective nonlinear FE model updating method. A small number of at-
empts have been conducted on the sensitivity-based nonlinear FE model
pdating method. Using the nonlinear time-domain responses, the up-
ating method based on the dynamic sensitivity is investigated in this
aper. 

The dynamic sensitivity is calculated using three methods: the finite
ifference method, the adjoint variable method, and the direct differen-
iation method. The finite difference method is simple to implement by
ach parameter perturbation; however, it suffers from the inefficiency
aused by re-analysis for each parameter [38] . In the adjoint variable
ethod, independent adjoint terms are added to the sensitivity equa-

ions of the objective function, and the sensitivities are computed in a
anner analogous to the method of Lagrange multipliers [39] . In this ap-
roach, the nonlinear dynamic analysis with initial conditions became
 terminal-value problem where terminal conditions were prescribed
or the adjoint equations. These equations must be integrated backward
n time, and the response and adjoint sensitivity cannot be computed
imultaneously [40 , 41] . Meanwhile, the dynamic response and corre-
ponding sensitivity can be synchronously determined using the direct
ensitivity analysis method. Conte et al. [42] and Gu et al. [43] proposed
he response sensitivity analysis approach to structure with plasticity
aterial under dynamic loading conditions. Scott and Azad [44] applied

he direct differentiation method to a force-based element formulation
ith material and geometric nonlinearity to compute the response sen-

itivities. 
The dynamic sensitivity-based model updating method for structures

ith nonlinearity using the time-domain responses is proposed. This pa-
er is organized as follows: In Section 2 , the detailed formulation and
onlinear updating procedure of the dynamic sensitivity-based method
re presented. To validate the performance of the proposed method,
 Duffing-Van der Pol oscillator, a magnetometer boom structure with
onlinear hinges, and a cantilever plate with multiple nonlinear sup-
orts are adopted in Section 3 . The conclusions are summarized in
ection 4 . 

. Methodology 

To update the nonlinear FE model, the time-domain responses are se-
ected as the targeted residual in the dynamic sensitivity-based updating
rocess in this paper. The finite difference method can be used for calcu-
ating the dynamic sensitivity by repeated nonlinear dynamic analysis
or each parameter. The method is time-consuming for large models and
erturbation step dependent. The sensitivities of dynamic responses are
alculated directly and synchronously using the direct differentiation
ethod in this paper. Two types of nonlinear equations of motion are

onsidered in this paper to derive the formulation of the dynamic sensi-
ivity analysis. Based on the dynamic sensitivity analysis, the proposed
onlinear FE model updating procedure is introduced. 

.1. Dynamic sensitivity analysis for nonlinear structure 

.1.1. Formulation for the first-order sensitivity equation 

The equation of motion for a nonlinear structure can be represented
s 

 ̈𝐱 ( 𝑡, 𝜽) + 𝐂 ̇𝐱 ( 𝑡, 𝜽) + 𝐊𝐱 ( 𝑡, 𝜽) + 𝐟 ( 𝐱 ( 𝑡, 𝜽) , 𝐱̇ ( 𝑡, 𝜽) , 𝜽) = 𝐟 ( 𝑡 ) (1)
nl 
here M, C, K ∈ℝ 

N ×N are the mass, damping, and stiffness matrix,
espectively. f ( t ) ∈ℝ 

N ×1 represents the external excitation load. x ( t , 𝜽),
̇
 ( 𝑡, 𝜽) , 𝐱̈ ( 𝑡, 𝜽)∈ℝ 

N ×1 are the displacement, velocity, and acceleration
ector, respectively. f nl ( x ( t , 𝜽), ̇𝐱 ( 𝑡, 𝜽) , 𝜽) ∈ℝ 

N ×1 is the nonlinear restoring
orce, in which case the nonlinear behavior of the structure is affected by
he updating parameters 𝜽. The first-order nonlinear equation of motion
an be rewritten from Eq. (1) : 
 

𝜼̇( 𝑡, 𝜽) = 𝐅 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) 

𝜼( 0 , 𝜽) = 𝜼0 
(2) 

here 𝜼( t , 𝜽) = [ x ( t , 𝜽) T 𝐱̇ ( 𝑡, 𝜽) T ] T is the 2 N -dimensional state vector, 𝜼0 is
he initial conditions, and 

 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) = 

( 

𝐱̇ ( 𝑡, 𝜽) 

− 𝐌 

−1 (𝐂 ̇𝐱 ( 𝑡, 𝜽) + 𝐊𝐱 ( 𝑡, 𝜽) + 𝐟 nl ( 𝐱 ( 𝑡, 𝜽) , 𝐱̇ ( 𝑡, 𝜽) , 𝜽) − 𝐟 ( 𝑡 ) 
)) 

(3) 

 ( 𝜼( t , 𝜽), 𝜽, t ) is the vector field. i The dynamic response sensitivity is com-
uted by differentiating the Eq. (2) directly with respect to the design
arameters 𝜃i ( i = 1,2,…, N p ), and applying the chain rule: 

𝜕 
⋅
𝜼

𝜕𝜃𝑖 
= 

𝜕 

𝜕𝜃𝑖 
𝐅 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) 

= ∇ 𝜼𝐅 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) ⋅
𝜕 𝜼

𝜕𝜃𝑖 
+ 

𝜕𝐅 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) 
𝜕𝜃𝑖 

(4) 

Similarly, the sensitivity equation is a first-order differentiation
quation: 

 

 

 

 

 

 

 

𝑑 

dt 

( 

𝜕 𝜼

𝜕𝜃𝑖 

) 

= ∇ 𝜼𝐅 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) ⋅
𝜕 𝜼

𝜕𝜃𝑖 
+ 

𝜕𝐅 ( 𝜼( 𝑡, 𝜽) , 𝜽, 𝑡 ) 
𝜕𝜃𝑖 

𝜕 𝜼

𝜕𝜃𝑖 

||||𝑡 =0 = 𝟎 
(5) 

Usually, the sensitivities of the initial displacement and velocity are
ero, science the initial conditionsare given first. Obviously, similar to
he direct sensitivity analysis based upon the second-order nonlinear
quation of motion, Eq. (2) can be solved in conjunction with Eq. (5) .
he solutions of the nonlinear dynamic responses and corresponding
ensitivities can be determined using the Runge-Kutta method, which is
ntegrated into the ‘ode45’ function of MATLAB. 

.1.2. Formulation for the second-order sensitivity equation 

The dynamic sensitivity for the nonlinear structure is also calculated
y differentiating Eq. (1) directly with respect to the design parameters

i ( i = 1,2,…, N p ), the equation of the dynamic sensitivity is given by 

 

𝜕 ̈𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

+ 𝐂 

𝜕 ̇𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

+ 𝐊 

𝜕𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

= − 

𝑑𝐟 nl ( 𝐱 ( 𝑡, 𝜽) , 𝐱̇ ( 𝑡, 𝜽) , 𝜽) 
𝑑𝜃𝑖 

= − 

( 

𝜕𝐟 nl ( 𝐱 ( 𝑡, 𝜽) , 𝐱̇ ( 𝑡, 𝜽) , 𝜽) 
𝜕𝐱 

𝜕𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

+ 

𝜕𝐟 nl ( 𝐱 ( 𝑡, 𝜽) , 𝐱̇ ( 𝑡, 𝜽) , 𝜽) 
𝜕 ̇𝐱 

𝜕 ̇𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

+ 

𝜕𝐟 nl 

𝜕𝜃

) 

= − 

( 

𝐉 𝐱 
𝜕𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

+ 𝐉 𝐱̇ 
𝜕 ̇𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

+ 

𝜕𝐟 nl 

𝜕𝜃

) 

(6) 

here the last term in the right-hand side of this expression represents
n explicit dependence on variable 𝜃i , and the first two terms show
he implicit dependence through dynamic responses x and 𝐱̇ . The sym-
ols J x and 𝐉 𝐱̇ are the Jacobian matrix of the nonlinear restoring force
 nl ( x ( t , 𝜽), ̇𝐱 ( 𝑡, 𝜽) , 𝜽) with respect to the displacement and velocity coordi-
ates: 

 𝐱 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜕 𝑓 𝑛 𝑙 1 
𝜕 𝑥 1 

⋯ 

𝜕 𝑓 𝑛 𝑙 1 
𝜕 𝑥 𝑁 

⋮ ⋱ ⋮ 
𝜕 𝑓 𝑛 𝑙 𝑁 

𝜕 𝑥 
⋯ 

𝜕 𝑓 𝑛 𝑙 𝑁 

𝜕 𝑥 

⎤ ⎥ ⎥ ⎥ ⎦ 𝐉 𝐱̇ = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜕 𝑓 𝑛 𝑙 1 
𝜕 ̇𝑥 1 

⋯ 

𝜕 𝑓 𝑛 𝑙 1 
𝜕 ̇𝑥 𝑁 

⋮ ⋱ ⋮ 
𝜕 𝑓 𝑛 𝑙 𝑁 

𝜕 ̇𝑥 
⋯ 

𝜕 𝑓 𝑛 𝑙 𝑁 

𝜕 ̇𝑥 

⎤ ⎥ ⎥ ⎥ ⎦ (8) 
1 𝑁 1 𝑁 
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Introduce the following symbolic representation: 

 𝑖 = 

𝜕𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

̇
 𝑖 = 

𝜕 ̇𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

̈
 𝑖 = 

𝜕 ̈𝐱 ( 𝑡, 𝜽) 
𝜕𝜃𝑖 

(9) 

he compact formula of the second-order ordinary differential equation
f sensitivity can be rewritten as 

 ̈𝐬 𝑖 + 

(
𝐂 + 𝐉 𝐱̇ 

)
𝐬̇ 𝑖 + 

(
𝐊 + 𝐉 𝐱 

)
𝐬 𝑖 + 

𝜕 𝐟 𝑛𝑙 
𝜕 𝜃𝑖 

= 𝟎 (10)

With x ( t , 𝜽) and 𝐱̇ ( 𝑡, 𝜽) obtained from Eq. (1) , the solution of the dy-
amic sensitivities can be computed from Eq. (10) using the Newmark- 𝛽
ethod. The equilibrium equation of the nonlinear dynamic response

ensitivity at t n + 1 then can be derived as 

𝑛 +1 = 𝐌 

( 

− 

1 
𝛽( Δ𝑡 ) 2 

𝐬 𝑖,𝑛 − 

1 
𝛽( Δ𝑡 ) 

𝐬̇ 𝑖,𝑛 + 

( 

1 − 

1 
2 𝛽

) 

𝐬̈ 𝑖,𝑛 
) 

+ 

(
𝐂 + 𝐉 𝐱̇ ,𝑛 +1 

)( 

− 

𝛼

𝛽( Δ𝑡 ) 
𝐬 𝑖,𝑛 + 

( 

1 − 

𝛼

𝛽

) 

𝐬̇ 𝑖,𝑛 + ( Δ𝑡 ) 
( 

1 − 

𝛼

2 𝛽

) 

𝐬̈ 𝑖,𝑛 
) 

+ 

𝜕𝐟 nl 

(
𝐱 
(
𝑡 𝑛 +1 , 𝜽

)
, 𝐱̇ 
(
𝑡 𝑛 +1 , 𝜽

)
, 𝜽
)

𝜕𝜃𝑖 

+ 

( 

1 
𝛽( Δ𝑡 ) 2 

𝐌 + 

𝛼

𝛽( Δ𝑡 ) 
(
𝐂 + 𝐉 𝐱̇ ,𝑛 +1 

)
+ 

(
𝐊 + 𝐉 𝐱,𝑛 +1 

)) 

𝐬 𝑖,𝑛 +1 

= 𝟎 (11) 

n which Δt is the time-step. 𝛼( 𝛼≥ 1/2) and 𝛽( 𝛽≥ 1/4( 𝛼+ 1/2) 2 ) are the
ntegration constants, which guarantee the unconditional stability of the
ewmark- 𝛽 method [29] . The accuracy of the dynamic response solu-

ions and the corresponding dynamic sensitivities depends on the time
tep [45] , and the accuracy is guaranteed when using a sufficiently small
ime-step in this work. 

The third term on the right-hand-side of Eq. (11) represents the par-
ial derivative of the restoring force vector, f nl ( x ( t , 𝜽), ̇𝐱 ( 𝑡, 𝜽) , 𝜽), with re-
pect to interest parameter 𝜃i under the condition that the responses at
ime t n + 1 are determined. The Jacobian matrix J x , n + 1 , and 𝐉 𝐱̇ ,𝑛 +1 also
hould be determined using the responses at time t n + 1 . This equation
an be solved for the vector of unknowns s i , n + 1 . It should be noted that
nce the numerical response of the structure at t n + 1 is known, the equi-
ibrium equation of the nonlinear dynamic response sensitivity has sev-
ral same structural matrices as Eq. (1) and is linear. Usually, the initial
onditions of the displacement and velocity are given previously, which
eads to the sensitivities of the initial conditions are zero. When the non-
inear dynamic response is also determined from the Newmark method,
t is applied to compute the dynamic sensitivities directly at the cur-
ent time. The advantage of the dynamic sensitivity analysis approach
s that the response sensitivities can be synchronously computed with
he nonlinear dynamic responses, either the first or second-order sensi-
ivity analysis equations are applied. 

.2. Nonlinear finite element model updating procedure 

The time-domain responses are useful outputs to update the nonlin-
ar FE model. Without loss of generality, the calculated and measured
ynamic response for the nonlinear structure are represented as R ( t , 𝜽)
nd R 

m , respectively. As the first step in nonlinear FE model updating,
he compared quantities can be collected in a vector such as 

 ( 𝑡, 𝜽) = 

[
𝐑 1 ( 𝑡, 𝜽) 𝑇 , ⋯ , 𝐑 Nq ( 𝑡, 𝜽) 𝑇 

]𝑇 
(12) 

here N q is the number of measured degrees-of-freedom (DOFs). The
rror is determined using the Taylor series expansion of the calculated
utputs truncated after the linear term: 

 𝑧 = 𝐳 𝑚 − 𝐳 ( 𝑡, 𝜽) ≈ 𝐫 𝑗 − 𝐒 𝑗 
(
𝜽 − 𝜽j 

)
(13) 

n which the vector, r j = z m - z j , is defined as the difference between the
easured and calculated outputs at the j th iteration. The measured and

alculated outputs are denoted by z m and z j = z ( 𝜽j ). S j is the sensitivity
atrix in the j th iteration. The error, 𝜺 z , is assumed to be small for pa-

ameters 𝜽 in the vicinity of 𝜽j , and at each iteration, the Eq. (13) is
olved for 

𝜽𝑗 = 𝜽 − 𝜽𝑗 (14) 

The updated parameters are then given by 

𝑗+1 = 𝜽𝑗 + Δ𝜽𝑗 (15) 

In practice, the model updating is carried out by minimizing the er-
or: 

min 
∈( ℝ ) 𝑝 ×1 ∶ 𝜽𝑙 ≤ 𝜽≤ 𝜽𝑢 

1 
2 
𝜺 𝑧 ( 𝜽) 𝑇 𝐖𝛆 𝑧 ( 𝜽) (16) 

here W is the diagonal weighting matrix that accounts for the impor-
ance of each individual term in the error vector. [ 𝜽l , 𝜽u ] is the parameter
nterval for the varying of the updating parameters. The objective func-
ion is then rewritten as the following weighted square Euclidean norm
f the error vector: 

 non ( 𝜽) = 

1 
2 

𝑁 𝑞 ∑
𝑞=1 

𝑁 𝑡 ∑
𝑘 =1 

∥ 𝑊 𝐳 ( 𝑡, 𝜽) 

(
𝑅 

𝑚 
𝑞 

(
𝑡 𝑘 
)
− 𝑅 𝑞 

(
𝑡 𝑘 , 𝜽

))
∥2 2 

∶ = 

1 
2 
∥ 𝐖 𝐳 ( 𝑡, 𝜽) ( 𝐳 𝑚 ( 𝑡 ) − 𝐳 ( 𝑡, 𝜽) ) ∥2 2 (17) 

n which W z ( t , 𝜽) can be obtained by 𝐖 𝐳( 𝑡, 𝜽) , || •|| means the L 2 -norm.
n general, the weighting matrix is difficult to be estimated; some rea-
onable choices are given by a previous study [4] . In this paper, the
eighting matrix for nonlinear FE model updating is W = I , which de-
otes no scales for the time-domain responses. 

Since the relationship between the outputs vector z ( t , 𝜽) and the up-
ating parameters 𝜽 is nonlinear, the minimization of Eq. (17) leads to a
onlinear least square problem, which is solved by iterative methods. In
he model updating problem, the derivatives 𝜕 J non / 𝜕 Δ𝜽= 0 are required
o the minimization of the objective equation Eq. (17) , which yields after
ubstitution of Eq. (13) the following equation at j th iteration, 

 𝐳 ( 𝑡, 𝜽) 𝐒 𝑗 Δ𝜽j = 𝐖 𝐳 ( 𝑡, 𝜽) 𝐫 𝑗 (18) 

In parameter updating by using the time-domain responses, the num-
er of measurements is always made larger than the number of param-
ters that yields overdetermined equation systems. Thus, the parameter
hanges can be solved from the following equation: 

 

𝑇 
𝑗 
𝐖 𝐳 ( 𝑡, 𝜽) 𝐒 𝑗 Δ𝜽𝑗 = 𝐒 𝑇 

𝑗 
𝐖 𝐳 ( 𝑡, 𝜽) 𝐫 𝑗 (19) 

The solution Δ𝜽j can be determined using the optimization method
n MATLAB. The sensitivity matrix of dynamic responses with respect
o updating parameters at j th iteration is given as 
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(20) 

here S j is determined using the dynamic sensitivity analysis method
hat is introduced in Section 2.1 . 

The dynamic sensitivity-based nonlinear FE model updating method
s illustrated in Fig. 1 . The process starts with the initial FE modeling
onsidering some nonlinear features, and the measured responses. By
sing the calculated and measured responses, the response residual that
escribes the analysis/real discrepancies is constructed. The dynamic
ensitivity analysis procedure is conducted to compute the dynamic re-
ponses and corresponding derivatives with respect to updating parame-
ers synchronously. The process continues with parameter estimation to
roduce an incremental parameter for an updated nonlinear FE model.
fterward, the implementation steps of the method are explained in de-

ail and the pseudo-codes for dynamic sensitivity analysis and nonlinear
E model updating are illustrated in Appendix A . 

Step 1: Construct the FE model of the nonlinear structure. The com-
ercial FE software, e.g., NASTRAN, is used for exporting the structural
atrices of the linear component that ensures the proposed method to

e applicable for complex structure. The nonlinear force is added to the
E model using MATLAB, in which the nonlinear dynamic analysis and
pdating are carried out. 

Step 2: Determine whether the measured responses match well with
he calculated responses of the nonlinear model. If not, begin the
ensitivity-based nonlinear model updating procedure. 

Step 3: Select the targeted response points and construct the residuals
etween the measured and calculated responses. 

Step 4: Select the updating parameters and conduct the nonlinear
esponse sensitivity analysis using the proposed formulations of first-
r second-order sensitivity equations using the direct differentiation
ethod. 

Step 5: Determine the parameter changes Δ𝜽j using the direct
ensitivity-based optimization algorithm and estimate whether the re-
ponse errors or parameter estimation errors satisfy the convergence
riterion. If not, continue the procedure by re-analysis of the nonlinear
tructure using the new parameters. 

Step 6: Stop the nonlinear model updating procedure until any of
he response errors or parameter estimation errors satisfy the conver-
ence criterion. If not, repeat Steps 3 to 6 until the number of iterations
quals to the maximum number. The response error e r (e.g. 10 − 6 ) and
arameter estimation error e 𝜃 (e.g. 10 − 6 ) are defined as 

 𝑟 = 

‖𝐑 

𝑚 − 𝐑 ‖2 ‖𝐑 

𝑚 ‖2 × 100% (21)

 𝜃 = 

∥ Δ𝜽∥2 
∥ 𝜽∥2 

× 100% (22) 

The dynamic sensitivity analysis plays an important role in the pro-
osed nonlinear FE model updating procedure. The proposed method
s challenging to update the structures with non-smooth nonlinearity,
s the sensitivity of the dynamic responses with respect to non-smooth
arameters is hard to be computed using the direct sensitivity analysis
ethod. Two crucial issues are considered in the proposed nonlinear
odel updating procedure. The first is that the measured time-domain

esponses generally have some random noise. This negatively affects the
ccuracy of the parameter updating. In this study, the polluted measure-
ents are simulated with zero-mean Gaussian white noise [46] added

o the calculated acceleration as 

̂
 

𝑚 = 𝐑 + 𝑁 𝑙 ⋅ 𝐍 𝑜𝑖𝑠𝑒 ⋅ 𝑣𝑎𝑟 ( 𝐑 ) (23)

here ̂𝐑 

𝑚 is the vector of polluted acceleration; N l is the noise level; N oise 

s a standard normal distribution vector with zero mean and unit stan-
ard deviation; var ( ∗ ) means the variance of the time history; R is the
ector of calculated acceleration. The other is the selection of the tar-
eted responses used in nonlinear FE model updating. As is well known,
haotic behavior is exhibited in some nonlinear systems for specific val-
es of parameters. When applying the time-domain responses as the tar-
eted outputs, the long-term behavior of nonlinear systems is often sen-
itive to the change of parameters, but short-term behavior is not [47] .
he selection of time points should be controlled by introducing a se-

ection control variable, e.g. 𝛾, into the objective function. 

 non ( 𝜽) = 

1 
2 

𝑁 𝑞 ∑
𝑞=1 

𝛾𝑁 𝑡 ∑
𝑘 =1 

∥ 𝑊 𝐳 ( 𝑡, 𝜽) 

(
𝑅 𝑞 

(
𝑡 𝑘 , 𝜽

)
− 𝑅 

𝑚 
𝑞 

(
𝑡 𝑘 
))

∥2 2 , with 𝛾 ∈
(
𝛾min , 1 

]
(24) 

n which the minimal 𝛾min > N q / N t ensures the existence of the optimal
olution. 

. Case studies 

The performance of the proposed direct sensitivity-based approach
s demonstrated by updating three nonlinear models: Duffing-Van der
ol oscillator, a magnetometer boom, and a cantilever plate with mul-
iple nonlinear supports. For computational cases, the forced external
xcitation or free vibration are simulated to three examples with given
nitial conditions. For all case studies, the formulation and location of
he nonlinearity are assumed to be known beforehand, and the critical
ssues are focused on the verification and implementation of the pro-
osed method. Discussions on the measurement noise and selection of
he targeted responses are also conducted to the proposed method. 

.1. Duffing-Van der Pol oscillator 

Duffing-Van der Pol oscillator, a non-autonomous system, is the most
xtensively studied example of nonlinear systems because of its wide
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Fig. 1. Flow chart for the direct sensitivity-based model updating using the time-domain responses combined with MATLAB and commercial FE software. 
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Table 1 

Initial parameters of the Duffing-Van der Pol 

oscillator for different measurement noise. 

Parameters 𝜇 𝛼 𝛽

Case 1 0.04 0.8 0.2 

Case 2 0.06 -0.7 0.3 

Case 3 0.4 3.6 -0.16 
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F
 

m  
ange of dynamic behaviors. Examples of such behavior arise in several
echanical engineering applications [48 , 49] . The non-dimensional mo-

ion of the oscillator subject to harmonic external excitation load is the
ollowing 

̈ ( 𝑡 ) − 𝜇
(
1 − 𝑥 2 ( 𝑡 ) 

)
𝑥̇ ( 𝑡 ) + 𝛼𝑥 ( 𝑡 ) + 𝛽𝑥 3 ( 𝑡 ) = 𝑓 cos ( 𝜔𝑡 ) (25)

n which x ( t ) is the displacement of the oscillator, 𝜇( 𝜇> 0) is the damping
arameter, 𝛼 and 𝛽 are the system parameters, f ( f = 1) and 𝜔 ( 𝜔 = 0.79) is
he amplitude and frequency of the harmonic external excitation load.
erein, the dynamic response sensitivity is calculated upon the first-
rder form of the oscillator 
 

𝑥̇ = 𝑦 

𝑦̇ = 𝜇
(
1 − 𝑥 2 ( 𝑡 ) 

)
𝑥̇ ( 𝑡 ) − 𝛼𝑥 ( 𝑡 ) − 𝛽𝑥 3 ( 𝑡 ) + 𝑓 cos ( 𝜔𝑡 ) 

(26) 

The detailed formulations of the dynamic response and sensitivity
nalysis are given in Appendix B . Initial conditions are x (0) = 1 and
 (0) = 0. The time interval is [0, 50]s, and the corresponding time step
s Δt = 0.01, which guarantees the accuracy for computing the nonlinear
ynamic responses and sensitivities. The simulated dynamic responses
nd corresponding dynamic sensitivities are solved by the ‘ode45’ func-
ion of MATLAB. The oscillator takes three main physical behavior by
dopting different values of system parameters, and the exact parame-
ers are given as follows. 

• Single well, if 𝛼> 0, 𝛽> 0: 𝜇= 0.1, 𝛼= 0.5, 𝛽= 0.5; 
• Double well, if 𝛼< 0, 𝛽> 0: 𝜇= 0.1, 𝛼= -0.5, 𝛽= 0.5; 
• Double-hump, if 𝛼> 0, 𝛽< 0: 𝜇= 0.5, 𝛼= 3, 𝛽= -0.2. 

The following three initial cases, which are listed in Table 1 , are used
or nonlinear model updating considering measurement noise. Measure-
ent noise with different levels N l = 0, 0.5%, 1%, 2%, 5% is enforced to

nvestigate the robustness of the proposed approach. The displacements
f three cases are considered as the targeted outputs, and the default
ontrol variable for the selection of the targeted responses are 𝛾= 0.2,
.2, and 0.06 for case 1, 2, and 3, respectively. The phase diagrams
f the measured responses with high noise level ( N l = 5%) are shown in
ig. 2 . 

By adopting the proposed dynamic sensitivity-based model updating
ethod, the relative ratio for the updated parameters is presented in
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Fig. 2. Phase diagrams of the measured responses with different noise level for three cases: (a) Case 1: 𝜇= 0.04, 𝛼= 0.8, 𝛽= 0.2, N l = 0 and 5%; (b) Case 2: 𝜇= 0.06, 

𝛼= -0.7, 𝛽= 0.3, N l = 0 and 5%; (c) Case 3: 𝜇= 0.4, 𝛼= 3.6, 𝛽= -0.16, N l = 0 and 5%. 

Table 2 

The relative ratio for the updated parameters for Duffing-Van der Pol oscil- 

lator with different measurement noise levels. 

Noise level N l = 0 N l = 0.5% N l = 1% N l = 2% N l = 5% 

Case 1 r 𝜇 1.000 1.003 0.984 0.945 0.925 

r 𝛼 1.000 0.999 0.999 0.989 0.987 

r 𝛽 1.000 1.000 1.001 1.010 1.014 

Case 2 r 𝜇 1.000 1.001 1.000 0.997 0.999 

r 𝛼 1.000 0.999 0.996 0.996 1.014 

r 𝛽 1.000 1.000 0.999 0.999 1.001 

Case 3 r 𝜇 1.000 1.000 1.000 1.007 1.019 

r 𝛼 1.000 1.000 1.000 1.000 0.999 

r 𝛽 1.000 0.992 0.997 1.016 0.969 
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Table 3 

Initial parameters to the investigation on the selec- 

tion of the targeted responses. 

Parameters 𝜇 𝛼 𝛽

Case I 0.06 0.7 0.3 

Case II 0.06 -0.7 0.3 

Case III 0.3 4.2 -0.12 

Table 4 

The relative ratio of the updated parameters for Duffing-Van der Pol oscil- 

lator with different selection control variable 𝛾. 

r 𝛾= 0.06 𝛾= 0.2 𝛾= 0.5 𝛾= 0.8 

Case I r 𝜇 1.035 1.019 0.956 3.600 

r 𝛼 0.997 1.001 0.998 1.631 

r 𝛽 1.003 0.999 1.002 0.708 

Case II r 𝜇 1.066 1.000 1.001 0.999 

r 𝛼 1.001 0.996 0.999 1.001 

r 𝛽 1.001 0.999 1.000 1.000 

Case III r 𝜇 0.998 - -2.400 -2.400 

r 𝛼 1.004 - 0.774 1.854 

r 𝛽 1.055 - 3.600 3.600 
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able 2 and defined as 

 𝑖 = 

𝜃
upda ted 
𝑖 

𝜃exact 
𝑖 

, 𝜃𝑖 ∈ 𝜽 (27)

here 𝜃exact represents the exact parameter, and r denotes the relative
atios retained three digits after the decimal point. The convergence cri-
erion of the response error and parameter estimation error are e r = 10 − 6 

nd e 𝜃= 10 − 6 , respectively. The updated parameters are close to the ex-
ct parameters when the relative ratio is close to 1. The relative error
lso can be calculated by using the relative ratio e 𝜃i = | r i -1| ×100%. As
hown in Table 2 , in case of no noise, the parameters are successfully
pdated, nevertheless, the relative ratio of these cases reaches 0.992
 e max = 0.8%) for noise level N l = 0.5% and equals to 0.984 ( e max = 1.6%)
or N l = 1%, respectively. Results indicate that the parameters are well
pdated when the observation with low noise. The maximum error
f the updated parameters increases with the increasing of the mea-
urement noise. When the high measurement noise levels are consid-
red, e.g., N l = 2% and N l = 5%, the relative ratios are 0.945 ( e max = 5.5%)
nd 0.925 ( e max = 7.5%), respectively. The proposed dynamic sensitivity-
ased nonlinear FE model updating method has limitation on the case
hat the observations with high measurement noise. 

To investigate the effect of the selection of the targeted responses,
he oscillator with measurement noise N l = 1% but on different control
ariable is considered. A small value of 𝛾 denotes a small amount of
ime-domain responses are selected as targeted responses. In this case, a
mall to large control variable is considered: 𝛾= 0.06, 0.2, 0.5, and 0.8,
nd the numbers of targeted responses are 300, 1000, 2500, and 4000,
espectively. 

The initial parameters are listed in Table 3 for the discussion on the
election of the targeted responses. The measured and different targeted
esponse selections for three cases are shown in Fig. 3 . The difference
etween the initial and targeted responses increases with the increase
f the variable 𝛾. After the nonlinear model updating process, the corre-
ponding relative ratios are presented in Table 4 in detail. It is observed
hat the parameters of case II can be accurately updated for these four
ontrol variables based on the proposed method. The relative ratios for
ases I and III are far away from 1 with an increasing of the variable 𝛾,
nd the parameters become unable to be updated when 𝛾 increases to
.8 (case I) and 0.2~0.8 (case III). This is explainable since the discrep-
ncy of the targeted responses, as shown in Fig. 3 , increases with the
ncrease of 𝛾. Results show that, when the relative error of the initial
esponses is significant, the accuracy of the updated parameters can be
nsured when using a small 𝛾> N q / N t . 

.2. Magnetometer boom 

Considering a general nonlinear hinge in the space structure, the pro-
osed method is implemented for updating the local parameters of the
onlinear hinge elements. As shown in Fig. 4 , an example of a space
tructure magnetometer, which is used to measure the strength and the
irection of the local magnetic field in satellites, such as LISA [50] ,
MILE [51] . The articulated magnetometer generally consists of booms,
inges, and sensors. The folded and deployed configuration of the mag-
etometer is shown in Fig. 4 (a) and (b), respectively. 

As shown in Fig. 4 (c), the three hinges are modeled using the non-
inear spring elements, and the booms are modeled using the sim-
le beam elements. The geometrical and material parameters of the
uxgate magnetometer are listed in Table 5 . It should be noted that
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Fig. 3. Measured responses and the selected targeted responses 

with different control variables: (a) Case I: 𝜇= 0.06, 𝛼= 0.7, 𝛽= 0.3; 

(b) Case II: 𝜇= 0.06, 𝛼= -0.7, 𝛽= 0.3; (c) Case III: 𝜇= 0.3, 𝛼= 4.2, 𝛽= - 
0.12. 

Fig. 4. An example of a fluxgate magnetometer in (a) folded 

and (b) deployed configuration, and (c) the finite element 

model with nonlinear spring elements. 
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Table 5 

Parameters of the fluxgate magnetometer. 

Parameters Value Unit Parameters Value Unit 

The length of the boom 1,2, and 3 ( l ) 1 m Density 1650 kg/m 

3 

The radius of the boom 1 ( R 1 , r 1 ) (20, 17.5) mm Elastic modulus 288 GPa 

The radius of the boom 2 ( R 2 , r 2 ) (25, 22.5) mm Poisson’s ratio 0.266 

The radius of the boom 3 ( R 3 , r 3 ) (30, 27.5) mm Horizontal stiffness coefficients ( 𝑘 ℎ 
𝑙𝑖𝑛 

, 𝑘 ℎ 
𝑛𝑙 

) (6 ×10 6 , 8 ×10 8 ) (N/m, N/m 

3 ) 

Vertical stiffness coefficients ( 𝑘 𝑣 
𝑙𝑖𝑛 

, 𝑘 𝑣 
𝑛𝑙 

) (8 ×10 5 , 8 ×10 8 ) (N/m, N/m 

3 ) Rotational stiffness coefficients ( 𝑘 𝑟 
𝑙𝑖𝑛 

, 𝑘 𝑟 
𝑛𝑙 

) (9 ×10 4 , 9 ×10 7 ) (N·m/rad, N·m/rad 3 ) 

Fig. 5. Initial displacement conditions for the periodic vibration (T = 0.0747s) of 

the magnetometer boom: black curve means the structural configuration, green 

curve means the initial conditions, the white dots are nodes of the FE model, 

and the green star is the selected node 16. 
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Fig. 6. Dynamic sensitivity of y-acceleration at point 16 with respect to updat- 

ing parameters: (a) 𝜕 𝐚 𝑦 ∕ 𝜕𝑘 𝑟 𝑛 𝑙 1 , (b) 𝜕 𝐚 𝑦 ∕ 𝜕𝑘 𝑟 𝑛 𝑙 2 , (c) 𝜕 𝐚 𝑦 ∕ 𝜕𝑘 𝑟 𝑛 𝑙 3 . 

i

𝐟  
he basic beam-spring finite element model can also be applied to
 similar and complex space truss structure [52] . To consider the
onlinearity in the hinges, the cubic springs are generally used for
he equivalent modeling in the beam-spring FE model [9 , 53] . The
tiffness coefficients of the hinge shown in Table 5 are pre-given
or the numerical analysis. The crucial issues on model updating
f the local nonlinear hinges are then discussed by the following
escriptions. 

.2.1. Modelling of boom with nonlinear hinges 

The beam-spring FE model consists of 16 nodes, 12 Euler-
ernoulli beam elements, and 3 nonlinear spring elements. The to-
al DOF of the FE model is 45. The relationship between dis-
lacement and nonlinear restoring force satisfies the following
quation, 

 = 𝑓 𝑙𝑖𝑛 + 𝑓 𝑛𝑙 = 𝑘𝑥 + 𝑘 𝑛𝑙 𝑥 
3 (28)

n which the k lin and k nl denote the linear and cubic nonlinear stiffness
oefficients, respectively. The linear one can be directly added into the
tructural stiffness matrix, and the nonlinear one is introduced as fol-
ows. 

The general configuration of the nonlinear spring elements which
re applied to connect several separate components is shown in
ig. 4 (c). Two types, internal type (element 𝛼) and grounded type
element 𝛽), of the nonlinear spring element, is considered in this
aper. For every element, three physical DOF, i.e. , the horizontal,
ertical, and rotational DOF, are considered at every node like node
 and j . The nonlinear restoring force vector f nl ( x ( 𝜽, t ), 𝜽) is written
s: 

 nl ( 𝐱 ( 𝜽, 𝑡 ) , 𝜽) = 

∑
𝐟 𝛼
nl 

(29)

here 𝐟 𝛼
𝑛𝑙 

is the nonlinear restoring force of the 𝛼th nonlinear element,
hich is obtained based on the relative or absolute displacements [16] .

n this example, the nonlinear restoring force of the beam-like FE model
s given by, 

 𝑛𝑙 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑘 ℎ 
𝑛𝑙 
𝑥 3 1 

𝑘 𝑣 
𝑛𝑙 
𝑦 3 1 

𝑘 𝑟 
𝑛𝑙 
𝜃3 1 
⋮ 

𝑘 ℎ 
𝑛𝑙 

(
𝑥 13 − 𝑥 16 

)3 
𝑘 𝑣 
𝑛𝑙 

(
𝑦 14 − 𝑦 17 

)3 
𝑘 𝑟 
𝑛𝑙 

(
𝜃15 − 𝜃18 

)3 
𝑘 ℎ 
𝑛𝑙 

(
𝑥 16 − 𝑥 13 

)3 
𝑘 𝑣 
𝑛𝑙 

(
𝑦 17 − 𝑦 14 

)3 
𝑘 𝑟 
𝑛𝑙 

(
𝜃18 − 𝜃15 

)3 
⋮ 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(30)
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Fig. 7. Measured and updated phase diagrams for different noise levels: (a) 

N l = 0.5%; (b) N l = 1%; (c) N l = 2%; (d) N l = 5%. 

Table 6 

The relative ratio of the updated rotational stiffness coefficients of 

the nonlinear hinges for different initial parameters. 

Initial parameters (N •m/rad 3 ) r 1 r 2 r 3 

Set 1: (5.85,4.5,13.95) ×10 7 1.000 1.000 0.996 

Set 2: (10.8,11.3,6.59) ×10 7 1.000 1.000 0.997 

Set 3: (4,16,5) ×10 7 1.000 1.000 1.003 

Set 4: (2,16,4) ×10 7 0.998 1.005 1.111 
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Table 7 

The relative ratio of the updated rotational stiffness coefficients of 

the nonlinear hinges for different noise levels. 

Noise level (%) r 1 r 2 r 3 

N l = 0 1.000 1.000 0.996 

N l = 0.5 0.995 1.013 1.015 

N l = 1 1.008 1.007 0.985 

N l = 2 0.993 0.962 1.098 

N l = 5 0.942 1.005 0.814 
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The rotational stiffness coefficients of the cubic terms for the three
inges are selected as the updating parameters in this case. The initial
elocities are zero, and the initial displacements are shown in Fig. 5 .
he time interval is [0, T ], and the corresponding time step is Δt = T / N T ,
here T is the minimal period of the NNM motion and determined from

he shooting and pseudo-arclength continuation algorithm [54] , N T is
he number of the time interval. A small time-step is used for ensuring
he accuracy of the integration procedure [27] , e.g., N T = 3000. To eval-
ate how the initial parameters will affect the updated results, different
nitial parameters ( 𝑘 𝑟 

𝑛 𝑙 1 
, 𝑘 𝑟 

𝑛 𝑙 2 
, 𝑘 𝑟 

𝑛 𝑙 3 
) for three nonlinear hinges are used in

he nonlinear FE model updating. 
The simulated dynamic responses and corresponding sensitivities are

olved by the proposed method in Section 2.1 . The y -acceleration with-
ut noise at point 16 is selected as the targeted outputs, and the selection
ontrol variable is set to 𝛾= 2/3 for the updating process. The sensitiv-
ties of acceleration at point 16 with respect to updating parameters
re shown in Fig. 6 . The convergency criterion is the same as shown
n Section 3.1 . By adopting the proposed nonlinear FE model updating
ethod, the relative ratios for the updated parameters considering dif-

erent initial parameters, i.e., r = 𝜃updated / 𝜃exact , are presented in Table 6 .
he relative errors for set 4 are 0.2%, 0.5%, and 11.1% for these three
arameters ( 𝑘 𝑟 

𝑛 𝑙 1 
, 𝑘 𝑟 

𝑛 𝑙 2 
, 𝑘 𝑟 

𝑛 𝑙 3 
), respectively. The relative error is less than

.5% for other sets. It is reasonable since the dynamic sensitivity to the
ocal parameters is small than that to global parameters (e.g., density
nd modulus), and the dynamic sensitivity to 𝑘 𝑟 

𝑛 𝑙 3 
shown in Fig. 6 (c)

s small than that to other updating parameters. The results indicate
hat the local hinge parameters can be well updated using the proposed
ethod for different initial parameters. 

.2.2. Effect of the measurement noise 

The initial parameters of Set 1 in Table 6 are used in this subcase.
he measurement random noises with level N l = 0.5%, 1%, 2%, and 5%
re considered. The y -acceleration with different noise levels at point
6 is selected as the targeted outputs, and the selection control vari-
ble is set to 𝛾= 2/3 for the updating process. The other parameters for
he proposed nonlinear FE model updating process are the same as the
bove. 

The updated and measured phase diagrams for the four sets are
hown in Fig. 7 . The relative ratios of the updated hinge parameters are
epresented in Table 7 . As with the same performance in Section 3.1 ,
he local parameters can be successfully updated under low noise level,
erein, the maximum relative error equals to 1.5% ( r 3 = 0.985) for noise
 l = 1%. Under high noise levels N l = 2% and N l = 5%, the relative ratios
re r 3 = 1.098( e 3 = 9.8%) and r 3 = 0.814( e 3 = 18.6%), respectively. It is ex-
lainable since the low sensitivity of the dynamic responses with re-
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Fig. 8. History of the relative error of parameters in the updating pro- 

cedure for different selection control variables: (a) 𝛾= 1/6 (b) 𝛾= 1/3; 

(c) 𝛾= 2/3; (d) 𝛾= 1. 

Table 8 

The relative ratio of the updated rotational stiffness co- 

efficients of the nonlinear hinges for different selection 

control variables. 

𝛾 r 1 r 2 r 3 

1/6 1.001 0.997 0.954 

1/3 1.001 0.998 0.958 

2/3 1.000 1.000 0.996 

1 1.000 1.000 0.999 
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Fig. 9. A cantilever plate with multiple nonlinear supports. 
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pect to the rotational stiffness coefficients of the local nonlinear hinges,
hich is shown in Fig. 6 . The results indicate that the proposed approach
orks well under different measurement noise levels. 

.2.3. Effect of the selection of the targeted responses 

The issue of the selection of the targeted responses used in nonlinear
E model updating is investigated in this subcase. The initial parameters
f Set 1 in Table 6 are used in this subcase. The noise level is set to zero,
nd the selection control variable is 𝛾= 1/6, 1/3, 2/3, and 1. The time
nterval is also [0, T ], and other parameters for the nonlinear FE model
pdating process are the same as the Section 3.2.1 . 

As shown in Fig. 1 , the procedure stops until any of the response
rrors or parameter estimation errors satisfy the convergence criteria,
hich are given in Section 2.2 . After four steps of iteration, the stiffness

oefficients converge for all sets of control variables. The history of the
elative errors of the updating parameters is shown in Fig. 8 . Updated
arameters compared with the exact values are presented in Table 8 . In
he magnetometer boom case, the relative errors of initial responses for
ifferent selection control variables calculated using Eq (21) are 0.89%,
.97%, 1.16%, and 1.41%, respectively. These initial response errors are
maller than that of the first case, and all the parameters can be accu-
ately updated using the proposed method. The maximum error of up-
ated parameters decreases with the increases of the control variables,
nd e max is 4.6% in the set of 𝛾= 1/6 for 𝑘 𝑟 
𝑛 𝑙 3 

. With a small relative error

f initial responses, the updating results of parameters are becoming sta-
le when the control variable 𝛾 is larger than 2/3. Results show that the
ccurate nonlinear FE model can be determined based on the proposed
ethod after a small amount number of iterations. 

.3. Cantilever plate with multiple nonlinear supports 

In order to show the applicability of the present method, a cantilever
late with multiple nonlinear supports is shown in Fig. 9 . The linear
omponent of the structure was proposed by Kim [55] , and the elastic
upports with combined cubic and quadratic nonlinear stiffness effect
ocated at points A, B , and C were considered in this case. The nonlinear
orce for each support is calculated using equation: f nl = k c x 

3 + k q x 
2 , and

ix parameters are selected to be updated. The material and geometric
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Fig. 10. Dynamic sensitivity of the z- 

acceleration of point B with respect to 

updating cubic and quadratic parameters: 

(a) 𝜕𝐚 𝑧 
𝐵 
∕ 𝜕𝑘 1 

𝑐 
, (b) 𝜕𝐚 𝑧 

𝐵 
∕ 𝜕𝑘 1 

𝑞 
, (c) 𝜕𝐚 𝑧 

𝐵 
∕ 𝜕𝑘 2 

𝑐 
, (d) 

𝜕𝐚 𝑧 
𝐵 
∕ 𝜕𝑘 2 

𝑞 
, (e) 𝜕𝐚 𝑧 

𝐵 
∕ 𝜕𝑘 3 

𝑐 
, (f) 𝜕𝐚 𝑧 

𝐵 
∕ 𝜕𝑘 3 

𝑞 
. 

Table 9 

Exact and initial values of the cubic and quadratic pa- 

rameters. 

Parameters Exact Initial 

𝑘 1 
𝑐 

(lbf/in 3 ) 1 ×10 5 1.2 ×10 5 

𝑘 1 
𝑞 

(lbf/in 2 ) 5 ×10 4 5.4 ×10 4 

𝑘 2 
𝑐 

(lbf/in 3 ) 1 ×10 5 0.7 ×10 5 

𝑘 2 
𝑞 

(lbf/in 2 ) 5 ×10 4 4.7 ×10 4 

𝑘 3 
𝑐 

(lbf/in 3 ) 1 ×10 5 0.8 ×10 5 

𝑘 3 
𝑞 

(lbf/in 2 ) 5 ×10 4 5.2 ×10 4 
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Table 10 

The relative ratio and errors for the updated parameters with 

different measurement noise levels. 

Parameters N l = 0 N l = 2% 

r e (%) r e (%) 

𝑘 1 
𝑐 

1.010 1.0 0.989 1.1 

𝑘 1 
𝑞 

1.000 0 1.000 0 

𝑘 2 
𝑐 

0.987 1.3 0.945 5.5 

𝑘 2 
𝑞 

1.000 0 1.001 0.1 

𝑘 3 
𝑐 

1.010 1.0 0.982 1.8 

𝑘 3 
𝑞 

1.000 0 1.000 0 
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s  
roperties are given in Fig. 9 , and the structure is modeled by 12 ×6
late FE elements. Three displacement components, i.e., a deflection
 w z ) and two in-plane rotations ( 𝜃x and 𝜃y ), are considered in the plate
E element, and the total DOFs of the structure is 252. The pre-given
xact and initial values of the updating parameters are listed in Table 9 .

The forced vibration under external force, 𝑓 𝑧 
𝐵 
( 𝑡 ) = 10 sin ( 𝜔 1 𝑡 ) , is con-

idered in this case, and the initial displacements and velocities are set
o zero. 𝜔 1 is the first natural frequency of the linear components of
he structure, 𝜔 1 = 0.37Hz. The time interval is [0, T 1 ], and the corre-
ponding time step is Δt = T 1 / N T , where T 1 and N T are T 1 = 1/ 𝜔 1 , and
 T = 3000, respectively. The z -direction accelerations with the different
oise levels, N l = 0, and N l = 2%, at points A, B , and C , are selected to up-
ate these six parameters. Using the direct sensitivity analysis approach,
he nonlinear dynamic responses and corresponding sensitivities can be
alculated synchronously. The dynamic sensitivity of the acceleration at
oint B with respect to six updating parameters are shown in Fig. 10 .
he magnitudes of dynamic sensitivity of the acceleration with respect
o quadratic parameters are larger than that of the acceleration with re-
pect to cubic parameters. The accuracy of the updated cubic parameters
as been affected by this situation. The initial error of the selected accel-
rations with full data points is 10.83%, and these updating parameters
re also of the local nonlinear parameters. The selection control vari-
ble, therefore, is set to 𝛾= 1 to ensure the accuracy of the nonlinear FE
odel updating. 

Table 10 illustrate the relative ratio and error of the updated param-
ters compared to the exact values. These errors for noise-free and 2%
imulated noise cases are less than 6%, indicating that a good agreement
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Fig. 11. Updated acceleration a z B compared to the exact responses with 

different measurement noise levels: (a) N l = 0, (b) N l = 2%. 
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etween the updated and exact parameters can be obtained using the
roposed method. The maximum error is 5.5% for 𝑘 2 

𝑐 
( N l = 2%) among

ll the parameter updating results, illustrating that the inaccuracy of
pdated nonlinear parameters is increased with an increase in the noise
evel, and the insensitive parameters are more affected by the measure-
ent noise. The acceleration with different noise levels calculated from

he updated nonlinear FE model and the exact responses are compared
nd shown in Fig. 11 (a) and (b), respectively. Results show that the pro-
osed dynamic sensitivity-based nonlinear FE model updating method is
pplicable for updating a complex structure modelled using commercial
E software, even under a low noise level effect. 

. Conclusion 

A dynamic sensitivity-based model updating approach for nonlinear
tructures is proposed in this paper. The updating method is carried out
sing the time-domain responses. The effects of the nonlinear structural
arameters on the time-domain responses are evaluated based upon the
ynamic sensitivity analysis, which is directly and simultaneously cal-
ulated from the differentiation of the first-order or second-order equa-
ions of motion. 

The accuracy and advantage of the proposed method are verified
sing different numerical models. The effect of the noise in the time-
omain responses and the selection scheme of the targeted responses
oints are investigated. Based on the simulation results, the following
onclusions are obtained. (1) The time-domain responses can be adopted
or nonlinear FE model updating even the observations are with noise.
2) The scheme for selecting the response points guarantees the accuracy
f the updated nonlinear FE model when considering different relative
rrors of the initial responses. (3) A small amount number of iterations
f the updating process are the advantage of the proposed method. 

The proposed nonlinear FE model updating approach is applicable to
he structure whose dynamic sensitivity is calculated by direct differen-
iation. The proposed approach, however, does not account for the non-
mooth nonlinearity and the actual measurement noise. Experimental
erification on the proposed approach for a complex structure consid-
ring gap and contact is worthy of further study. 

uthor statement 

The authors are appreciative of the constructive comments and sug-
estions provided by the reviewers. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper. 

RediT authorship contribution statement 

Zhifu Cao: Conceptualization, Methodology, Software, Validation,
ormal analysis, Investigation, Data curation, Writing - original draft,
riting - review & editing, Visualization. Qingguo Fei: Resources, Writ-

ng - review & editing, Project administration, Supervision, Funding ac-
uisition. Dong Jiang: Investigation, Validation, Writing - review &
diting. Dahai Zhang: Writing - review & editing. Hui Jin: Writing -
eview & editing. Rui Zhu: Writing - review & editing. 

cknowledgments 

The authors would like to thank the support of the National Natu-
al Science Foundation of China (No. 11602112 , No. 11572086 ), and
he Natural Science Foundation of Jiangsu Province (No. BK20170022 ,
o. BK20190324 ), and the National Key Research and Development
rogram of China ( 2017YFC0805103 ), and the Fundamental Research
unds for the Central Universities . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004608
https://doi.org/10.13039/501100013290
https://doi.org/10.13039/501100012226


Z. Cao, Q. Fei and D. Jiang et al. International Journal of Mechanical Sciences 184 (2020) 105788 

Table A1 

Pseudo-code for nonlinear dynamic response and sensitivity analysis. 

Pseudo-code 1 Nonlinear dynamic response and sensitivity 

Input : Initial conditions: x 0 , 𝐱̇ 0 , S , 𝐒̇ 0 , 𝐒̈ 0 ; Structural matrices: M, C, K ; External excitation: f ( t ); Nonlinear elements parameters: 𝜽; Newmark scheme parameter: 

t f , N T , 𝛽 , 𝛼

Output: Calculated nonlinear responses: x , ̇𝐱 , ̈𝐱 ; Dynamic sensitivities: S , ̇𝐒 , ̈𝐒 
Begin 

1: f nl 0 = f nl (x 0 , ̇𝐱 0 , 𝜽) // Initial nonlinear force 

2: 𝐱̈ 0 = M 

− 1 ( f 0 - C ̇𝐱 0 - Kx 0 - f nl 0 ) // Initial acceleration 

3: ∆t = t f / N T // Time-step 

4: for time = 1 to t f // Final time 

5: t i + 1 : = t i +∆t // Computation time 

6: 𝐱̇ 𝑖 +1 : = ̇𝐱 𝑖 + (1- 𝛼) ∆t ̈𝐱 𝑖 ; x i + 1 : = x i +∆t ̇𝐱 𝑖 + (1/2- 𝛽) ∆t 2 𝐱̈ 𝑖 ; 𝐱̈ 𝑖 +1 : = 0 ; // Prediction 

7: f nli + 1 : = f nl (x i + 1 , ̇𝐱 𝑖 +1 , 𝜽); K T // Predicted nonlinear force and tangent stiffness matrix 

8: e R : = || M ̈𝐱 𝑖 +1 + C ̇𝐱 𝑖 +1 + Kx i + 1 + f nli + 1 - f i + 1 ||/|| M ̈𝐱 𝑖 +1 + C ̇𝐱 𝑖 +1 + Kx i + 1 + f nli + 1 || // Relative error of prediction responses 

9: if e R >𝜀 then 

10: 𝐊 𝑅 
𝑒 

: = 1 
𝛼Δ𝑡 2 

𝐌 + 𝛽

𝛼Δ𝑡 
𝐂 + 𝐊 + 𝐊 𝑇 // Equivalent stiffness matrix for nonlinear dynamic response calculation 

11: 𝐅 𝑅 
𝑒 

: = 𝐌 ̈𝐱 𝑖 +1 + 𝐂 ̇𝐱 𝑖 +1 + 𝐊 𝐱 𝑖 +1 + 𝐟 𝑛 𝑙 𝑖 +1 − 𝐟 𝑖 +1 // Equivalent residual vector for nonlinear dynamic response calculation 

12: ∆x : = -( 𝐊 𝑅 
𝑒 

) − 1 𝐅 𝑅 
𝑒 

// Increment displacement calculation 

13: x i + 1 : = x i + 1 +∆x ; 𝐱̇ 𝑖 +1 : = ̇𝐱 𝑖 +1 + 𝛼/( 𝛽∆t ) ∆x ; 𝐱̈ 𝑖 +1 : = ̈𝐱 𝑖 +1 + 1/( 𝛽∆t 2 ) ∆x ; // Correction 

14: f nli + 1 : = f nl (x i + 1 , ̇𝐱 𝑖 +1 , 𝜽); K T // Updated nonlinear force and tangent stiffness matrix 

15: e R : = || M ̈𝐱 𝑖 +1 + C ̇𝐱 𝑖 +1 + Kx i + 1 + f nli + 1 - f i + 1 ||/|| M ̈𝐱 𝑖 +1 + C ̇𝐱 𝑖 +1 + Kx i + 1 + f nli + 1 || // Relative error of updated responses 

16: end if 

17: J x , i + 1 , 𝐉 𝐱̇ ,𝑖 +1 // Jacobian matrices of nonlinear force with respect to displacement and velocity 

18: 
𝜕𝐟 nl ( 𝐱 𝑖 +1 , ̇𝐱 𝑖 +1 , 𝜽) 

𝜕 𝜽
// Derivative of nonlinear force with respect to updating parameters 

19: 𝐊 𝑠 
𝑒 
: = 1 

𝛽( Δ𝑡 ) 2 
𝐌 + 𝛼

𝛽( Δ𝑡 ) 
( 𝐂 + 𝐉 𝐱̇ ,𝑛 +1 ) + ( 𝐊 + 𝐉 𝐱,𝑛 +1 ) // Equivalent stiffness matrix for dynamic sensitivity calculation 

20: 𝐅 𝑠 
𝑒 
: = 

𝐌 (− 1 
𝛽Δ𝑡 2 

𝐒 𝑖 − 
1 

𝛽Δ𝑡 
𝐒̇ 𝑖 + (1 − 

1 
2 𝛽
) ̈𝐒 𝑖 ) 

+( 𝐂 + 𝐉 𝐱̇ 𝑖 +1 )(− 
𝛼

𝛽Δ𝑡 
𝐒 𝑖 + (1 − 

𝛼

𝛽
) ̇𝐒 𝑖 + Δ𝑡 (1 − 

𝛼

2 𝛽
) ̈𝐒 𝑖 ) 

+ 𝜕𝐟 nl ( 𝐱 𝑖 +1 , ̇𝐱 𝑖 +1 ) 
𝜕 𝜽

// Equivalent residual vector for dynamic sensitivity calculation 

21: S i + 1 : = -( 𝐊 𝑠 
𝑒 
) − 1 𝐅 𝑠 

𝑒 
// Displacement sensitivity 

22: 𝐒̇ 𝑖 +1 : = 
𝛼

𝛽Δ𝑡 
( 𝐒 𝑖 +1 − 𝐒 𝑖 ) + ( 1 − 

𝛼

𝛽
) ̇𝐒 𝑖 + Δ𝑡 ( 1 − 

𝛼

2 𝛽
) ̈𝐒 𝑖 // Velocity sensitivity 

23: 𝐒̈ 𝑖 +1 : = 
1 

𝛽Δ𝑡 2 
( 𝐒 𝑖 +1 − 𝐒 𝑖 ) − 

1 
𝛽Δ𝑡 

𝐒̇ 𝑖 − ( 
1 
2 𝛽

− 1 ) ̈𝐒 𝑖 // Acceleration sensitivity 

24: end for 

25: end 

Table A2 

Pseudo-code for nonlinear FE model updating based on direct sensitivity analysis. 

Pseudo-code 2 Direct sensitivity-based nonlinear FE model updating 

Input : Measured responses: R m ; Initial parameters: 𝜽0 ; Selection control variable: 𝛾; Maximum number of iterations: N ; Nonlinear dynamic responses and 

sensitivity analysis parameters: x 0 , 𝐱̇ 0 , t f , N T , K, M, C, f ( t ), f nl 

Output: Updated parameters: 𝜽updated ; Updated responses: R updated 

Begin 

1: r p : = 1 to 𝛾N T // Selected responses points 

2: for iteration = 1 to N // Maximum number of iterations 

3: n + 1: = n 
4: R n , S n // Calculated nonlinear dynamic responses and sensitivities using x 0 , 𝐱̇ 0 , t f , N T , K, M, C, f ( t ), f nl in Pseudo-code 1 

5: r n : = R m - R n // Response residual 

6: ∆𝜽← min 𝐽 non ( 𝜽) = 
1 
2 
∑𝑁 𝑞 

𝑞=1 
∑𝑁 𝑡 

𝑘 =1 ∥ 𝑊 𝐳( 𝑡, 𝜽) ( 𝑅 𝑚 𝑞 ( 𝑡 𝑘 ) − 𝑅 𝑞 ( 𝑡 𝑘 , 𝜽)) ∥
2 
2 // Updating parameters estimation using the optimization method in MATLAB 

7: 𝜽n + 1: = 𝜽n +∆𝜽 // Updated parameters 

8: e r : = 
‖𝐑 𝑚 − 𝐑 𝑛 ‖2 ‖𝐑 𝑚 ‖2 × 100% // Responses error 

9: e 𝜃 : = ∥Δ𝜽∥2 
∥𝜽𝑛 ∥2 

× 100% // Parameter estimation error 

10: if e r or e 𝜃 < tolerance then 

11: Return 

12: else 

13: Continue 

14: end if 

15: end for 

16: end 
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ppendix A. Pseudo-code for direct sensitivity-based nonlinear FE 

odel updating 

Tables A1 and A2 . 

ppendix B. Dynamic sensitivity analysis of Duffing-Van der Pol 

scillator 

The first-order form of the Duffing-Van der Pol oscillator is given in
q. (26) . The new unknowns are given as follows 
= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑥 

𝑦 

𝜕𝑥 

𝜕 𝜽
𝜕𝑦 

𝜕 𝜽

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 
(B1) 
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𝜕𝑥 

𝜕 𝜽
= 

[ 
𝜕𝑥 

𝜕𝜇

𝜕𝑥 

𝜕𝛼

𝜕𝑥 

𝜕𝛽

] 𝑇 
= 

[
𝑠 11 𝑠 12 𝑠 13 

]𝑇 
𝜕𝑦 

𝜕 𝜽
= 

[ 
𝜕𝑦 

𝜕𝜇

𝜕𝑦 

𝜕𝛼

𝜕𝑦 

𝜕𝛽

] 𝑇 
= 

[
𝑠 21 𝑠 22 𝑠 23 

]𝑇 (B2)

n which the updating parameters herein are 𝜽= [ 𝜇, 𝛼, 𝛽] T . Finally, the
rst-order equations of motion and sensitivity have the form 

̇ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑥̇ 

𝑦̇ 

𝑠̇ 11 
𝑠̇ 12 
𝑠̇ 13 
𝑠̇ 21 
𝑠̇ 22 
𝑠̇ 23 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑦 

𝜇
(
1 − 𝑥 2 

)
𝑦 − 𝛼𝑥 − 𝛽𝑥 3 + 𝑓 cos ( 𝜔𝑡 ) 

𝑠 21 
𝑠 22 
𝑠 23 (

1 − 𝑥 2 
)
𝑦 − 2 𝜇𝑥𝑦 𝑠 11 + 𝜇

(
1 − 𝑥 2 

)
𝑠 21 − 𝛼𝑠 11 − 3 𝛽𝑥 2 𝑠 11 

−2 𝜇𝑥𝑦 𝑠 12 + 𝜇
(
1 − 𝑥 2 

)
𝑠 22 − 𝑥 − 𝛼𝑠 12 − 3 𝛽𝑥 2 𝑠 12 

−2 𝜇𝑥𝑦 𝑠 13 + 𝜇
(
1 − 𝑥 2 

)
𝑠 23 − 𝛼𝑠 13 − 𝑥 3 − 3 𝛽𝑥 2 𝑠 13 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ 
(B3)

The initial conditions are given in advance, so the initial sensitivities
f displacement and velocity are zero. The dynamic and sensitivity equa-
ions ( B3 ) can be solved using Runge-Kutta method, which is integrated
nto the ‘ode45’ function of MATLAB. 
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