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A dynamic sensitivity-based model updating approach by using the time-domain responses is proposed in this
paper. The sensitivity analysis of time-domain response is derived by using the direct differentiation method. The
objective function of the nonlinear model updating is constructed by minimizing the discrepancy between the
measured and the calculated time-domain responses. The time-domain responses and the corresponding dynamic
sensitivities are calculated synchronously. The repeated nonlinear dynamic analysis can be avoided to obtain
dynamic sensitivity, which is independent of the perturbation step. Numerical examples of a Duffing-Van der
Pol oscillator, a magnetometer boom, and a cantilever plate with multiple nonlinear supports are adopted to
verify the method. Crucial issues about the measured noise and the selection of the targeted responses are also
considered and discussed. The validation results show that the proposed method is effectively applied to model
updating of nonlinear structure using time-domain response with good anti-noise performance, and the scheme

for response points selection is reliable for guaranteeing the accuracy.

1. Introduction

The finite element (FE) method has been widely applied in engineer-
ing, and many methods have been developed to improve the accuracy
of the FE model [1-3]. Model updating is considered as the feasible
approach for obtaining an updated model that accurately reflects struc-
tural responses under the linear hypothesis [4-6]. However, nonlineari-
ties are widespread exist and cannot be neglected in practical structures
[7-9]. To obtain a more accurate mathematical model to predict the
nonlinear dynamic responses, therefore, the structural dynamic model
updating methods for nonlinear structures have attracted attention.

In the conventional linear model updating methods, modal frequen-
cies and mode shapes are considered as the output residuals to update
the FE model [10-12]. However, these output residuals are not appro-
priate for the nonlinear dynamic behavior, since the nonlinear charac-
teristics of the structures are difficult to be reflected from these outputs.
Ewins et al. [13-15] proposed a ‘modal test+’ procedure for model vali-
dation of nonlinear engineering structures; the residual in the updating
process was constructed using the nonlinear frequency response func-
tion. Wang et al. [16] presented a model updating strategy for structures
with local nonlinearity, and nonlinear model updating was carried out
after the underlying linear structure was updated. Similar to the ‘modal
test+’ approach, the frequency domain responses were considered as
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the compared outputs. Asgarieh et al. [17] and Wang et al. [18,19] pro-
posed a nonlinear model updating method based on the instantaneous
modal parameters of the decomposed time-domain responses. Recently,
with the application of the nonlinear normal modes (NNM) to structural
dynamics, the NNM based nonlinear structural model updating meth-
ods [20-23] were presented and applied to the ECL [23] and Round
Robin [20,21] benchmark problems. Silva et al. [24] and Asgarieh et al.
[25] compared the frequency-domain and time-domain updating meth-
ods for nonlinear model updating. These different residuals, such as fre-
quency response, nonlinear force, and time-varying instantaneous pa-
rameters, were proven to be successfully used for nonlinear updating.
The time-domain responses contained the full effects of the nonlinearity
in the structures are considered to construct the output residuals, which
are requested to be minimized in the nonlinear model updating process.

The time-domain responses can be computed using different meth-
ods [26-29]. The effects of the nonlinear structural parameters on the
time-domain responses are evaluated using the sensitivity analysis meth-
ods. Depending on whether the sensitivity is used, the model updating
methods can be classified into gradient and non-gradient based algo-
rithms. Song et al. [23] applied the interior point optimization algo-
rithm, which does not require the gradients of the objective function
to the updating parameters. In recent years, the intelligence-like algo-
rithms [25,30,31] were successfully demonstrated to the non-gradient
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based nonlinear model updating method. Chisari et al. [32] proposed a
genetic algorithm-based identification method to a based-isolated con-
crete bridge using the past dynamic and static test measurements. How-
ever, due to the global search, the whole updating procedure was often
time-consuming. The sensitivity-based model updating methods were
effective to the FE model updating but most of these applications are
on the linear structures [33-36]. Ebrahimian et al. [37] proposed a
framework for damage identification using the batch Bayesian estima-
tion based nonlinear finite element updating approaches. The nonlinear
dynamic behavior of the assembled structures is affected by the connec-
tions, and the structural model should be accurately updated using an
effective nonlinear FE model updating method. A small number of at-
tempts have been conducted on the sensitivity-based nonlinear FE model
updating method. Using the nonlinear time-domain responses, the up-
dating method based on the dynamic sensitivity is investigated in this
paper.

The dynamic sensitivity is calculated using three methods: the finite
difference method, the adjoint variable method, and the direct differen-
tiation method. The finite difference method is simple to implement by
each parameter perturbation; however, it suffers from the inefficiency
caused by re-analysis for each parameter [38]. In the adjoint variable
method, independent adjoint terms are added to the sensitivity equa-
tions of the objective function, and the sensitivities are computed in a
manner analogous to the method of Lagrange multipliers [39]. In this ap-
proach, the nonlinear dynamic analysis with initial conditions became
a terminal-value problem where terminal conditions were prescribed
for the adjoint equations. These equations must be integrated backward
in time, and the response and adjoint sensitivity cannot be computed
simultaneously [40,41]. Meanwhile, the dynamic response and corre-
sponding sensitivity can be synchronously determined using the direct
sensitivity analysis method. Conte et al. [42] and Gu et al. [43] proposed
the response sensitivity analysis approach to structure with plasticity
material under dynamic loading conditions. Scott and Azad [44] applied
the direct differentiation method to a force-based element formulation
with material and geometric nonlinearity to compute the response sen-
sitivities.

The dynamic sensitivity-based model updating method for structures
with nonlinearity using the time-domain responses is proposed. This pa-
per is organized as follows: In Section 2, the detailed formulation and
nonlinear updating procedure of the dynamic sensitivity-based method
are presented. To validate the performance of the proposed method,
a Duffing-Van der Pol oscillator, a magnetometer boom structure with
nonlinear hinges, and a cantilever plate with multiple nonlinear sup-
ports are adopted in Section 3. The conclusions are summarized in
Section 4.

2. Methodology

To update the nonlinear FE model, the time-domain responses are se-
lected as the targeted residual in the dynamic sensitivity-based updating
process in this paper. The finite difference method can be used for calcu-
lating the dynamic sensitivity by repeated nonlinear dynamic analysis
for each parameter. The method is time-consuming for large models and
perturbation step dependent. The sensitivities of dynamic responses are
calculated directly and synchronously using the direct differentiation
method in this paper. Two types of nonlinear equations of motion are
considered in this paper to derive the formulation of the dynamic sensi-
tivity analysis. Based on the dynamic sensitivity analysis, the proposed
nonlinear FE model updating procedure is introduced.

2.1. Dynamic sensitivity analysis for nonlinear structure

2.1.1. Formulation for the first-order sensitivity equation
The equation of motion for a nonlinear structure can be represented
as

MXx(t, 0) + Cx(t, 0) + Kx(t, 0) + f,;(x(1, 0),x(t, 0), 0) = f(¢) (€))
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where M, C, KERV*N are the mass, damping, and stiffness matrix,
respectively. f(t)eRN*! represents the external excitation load. x(t,0),
X(1,0), X(t,0)eRN*! are the displacement, velocity, and acceleration
vector, respectively. f,;(x(t,0),x(t,0),0)eRN*! is the nonlinear restoring
force, in which case the nonlinear behavior of the structure is affected by
the updating parameters 6. The first-order nonlinear equation of motion
can be rewritten from Eq. (1):

{r‘:(t, 6) = F(n(t,6),6,1)
n(0,0) = n,

where 7(t,0)=[x(t,0)T x(t, ®)T1T is the 2N-dimensional state vector, 7, is
the initial conditions, and

@

x(t, 0)

F(n(t,0),0,1) = 3
(n(t.0).6.0 <—M‘1(CX(I,9)+Kx(t, 0) + £, (x(t, 0),X(t,9),9)—f(t))> @

F(n(t,0),0,t) is the vector field.i The dynamic response sensitivity is com-
puted by differentiating the Eq. (2) directly with respect to the design
parameters 0; (i=1,2,..., N,), and applying the chain rule:

an 9
— = ZF@,0),0,t
20, ~ 0, (n(2,0),0,1)
on  dF(n(t,0).6,1)
=V.F AL A s A A 4
v, Fn(.6),0,1) 5 T 7 @

i i
Similarly, the sensitivity equation is a first-order differentiation
equation:

F
40 _ g Fon,0),0,0)- 21 4 KA0,0.0
dt \ 96, n 36, 9,
. )
n

=0
=0

20,

Usually, the sensitivities of the initial displacement and velocity are
zero, science the initial conditionsare given first. Obviously, similar to
the direct sensitivity analysis based upon the second-order nonlinear
equation of motion, Eq. (2) can be solved in conjunction with Eq. (5).
The solutions of the nonlinear dynamic responses and corresponding
sensitivities can be determined using the Runge-Kutta method, which is
integrated into the ‘ode45’ function of MATLAB.

2.1.2. Formulation for the second-order sensitivity equation

The dynamic sensitivity for the nonlinear structure is also calculated
by differentiating Eq. (1) directly with respect to the design parameters
0; (i=1,2,..., N},), the equation of the dynamic sensitivity is given by

X(1.0)  OX(1,0) L 0X(1,6)
96; 26, 06,

df(x(1, 0),%(1, 0), 0)

S T a—

of(x(1,0), X(t, 0), 0) 9x(t, 0)

_< ox 90,

+ oy (x(1,0).%(1,0),0) 0k(t,6) Iy )
0% 29 90
ox(1,6) - 0x(t,6)  ofy

- _<J" 20, T, +¥>

M

6

where the last term in the right-hand side of this expression represents
an explicit dependence on variable 6;, and the first two terms show
the implicit dependence through dynamic responses x and x. The sym-
bols J, and J;are the Jacobian matrix of the nonlinear restoring force
£ (x(t,0),x(1, 0),0) with respect to the displacement and velocity coordi-
nates:

9/l iy iy 9fniy
x| oxX 09X 9%

I | A I ®
Ofni fniy 9fniy fniy

0%, OxN 0%, oxN
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Introduce the following symbolic representation:

ox(t, 0)
! 20,

1
ax(1, 0)
i 00,
. 0X(1,0)
= 9
5= — ©)

i

the compact formula of the second-order ordinary differential equation
of sensitivity can be rewritten as

- . afnI
Ms,.+(C+J,-‘)s,-+(K+Jx)s,~+¥=0 (10)

With x(t,0) and x(z, 0) obtained from Eq. (1), the solution of the dy-
namic sensitivities can be computed from Eq. (10) using the Newmark-4
method. The equilibrium equation of the nonlinear dynamic response
sensitivity at t,,; then can be derived as

1 1 . 1 \..
Pret = M<_ﬂ(Az)2 Sin = Gan et <1 - ﬁ)*‘")

+ (C+fon+1)<—ﬁsi,n + <1 - %)s +(At)<1 - %)s)

i 0fnl(X(ln+1, 0)’X<tn+179)’9)
d0;

i

1 a
+ <ﬂ(At)2M+ B(AD) (CH+Jgn) + (K+Jx,n+1)>si,n+l

=0 (11)

in which At is the time-step. a(a>1/2) and p(f>1/4(a+1/2)?) are the
integration constants, which guarantee the unconditional stability of the
Newmark-# method [29]. The accuracy of the dynamic response solu-
tions and the corresponding dynamic sensitivities depends on the time
step [45], and the accuracy is guaranteed when using a sufficiently small
time-step in this work.

The third term on the right-hand-side of Eq. (11) represents the par-
tial derivative of the restoring force vector, f;(x(t,0),x(z, 0),0), with re-
spect to interest parameter 6; under the condition that the responses at
time t,,, are determined. The Jacobian matrix Jy ,,.1, and Jy ,,, also
should be determined using the responses at time ¢, ;. This equation
can be solved for the vector of unknownss; ,, ;. It should be noted that
once the numerical response of the structure at t,; is known, the equi-
librium equation of the nonlinear dynamic response sensitivity has sev-
eral same structural matrices as Eq. (1) and is linear. Usually, the initial
conditions of the displacement and velocity are given previously, which
leads to the sensitivities of the initial conditions are zero. When the non-
linear dynamic response is also determined from the Newmark method,
it is applied to compute the dynamic sensitivities directly at the cur-
rent time. The advantage of the dynamic sensitivity analysis approach
is that the response sensitivities can be synchronously computed with
the nonlinear dynamic responses, either the first or second-order sensi-
tivity analysis equations are applied.

2.2. Nonlinear finite element model updating procedure

The time-domain responses are useful outputs to update the nonlin-
ear FE model. Without loss of generality, the calculated and measured
dynamic response for the nonlinear structure are represented as R(t,0)
and R™, respectively. As the first step in nonlinear FE model updating,
the compared quantities can be collected in a vector such as

2(1,6) = [R,(1,0)" . Ry, (1.0)" | (12)

where Ny is the number of measured degrees-of-freedom (DOFs). The
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error is determined using the Taylor series expansion of the calculated
outputs truncated after the linear term:

e, =2"—2(1,0)~r;—S;(0-6,) (13)

in which the vector, 1j=2"-z;, is defined as the difference between the
measured and calculated outputs at the jth iteration. The measured and
calculated outputs are denoted by z™ and zj=z(9j). Sj is the sensitivity
matrix in the jth iteration. The error, ¢,, is assumed to be small for pa-
rameters 6 in the vicinity of 0;, and at each iteration, the Eq. (13) is

solved for
2B, =0-9, (14)
The updated parameters are then given by

0,1 =0, + A0, (15)

In practice, the model updating is carried out by minimizing the er-
ror:

min leZ(G)TWz&:Z(G) (16)
ocRP¥!:0,<0<6, 2

where W is the diagonal weighting matrix that accounts for the impor-
tance of each individual term in the error vector. [6;,0,] is the parameter
interval for the varying of the updating parameters. The objective func-
tion is then rewritten as the following weighted square Euclidean norm
of the error vector:

=2
z

Inon(6)

N —

1
I Waear (R (1) = Ry (1.0) )13

1 k=1

21l W (0) = 21, O)I2 ()

=
I

in which W,y can be obtained by W, ), ||*|| means the L,-norm.
In general, the weighting matrix is difficult to be estimated; some rea-
sonable choices are given by a previous study [4]. In this paper, the
weighting matrix for nonlinear FE model updating is W=I, which de-
notes no scales for the time-domain responses.

Since the relationship between the outputs vector z(t, 8) and the up-
dating parameters 6 is nonlinear, the minimization of Eq. (17) leads to a
nonlinear least square problem, which is solved by iterative methods. In
the model updating problem, the derivatives dJ,,,,/0A0=0 are required
to the minimization of the objective equation Eq. (17), which yields after
substitution of Eq. (13) the following equation at jth iteration,

W,.0)S;80; = Wy, gr; (18)

In parameter updating by using the time-domain responses, the num-
ber of measurements is always made larger than the number of param-
eters that yields overdetermined equation systems. Thus, the parameter
changes can be solved from the following equation:

ST W,.0,40; = ST W, or; (19)

The solution A6; can be determined using the optimization method
in MATLAB. The sensitivity matrix of dynamic responses with respect
to updating parameters at jth iteration is given as
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S - —azj
J i 60 -
FOR (1) OR (1) oR, (1))
2 26, 26,
OR (ty)  oR () OR,(ty,)
26, 26, 00,
R, (1)  OR, (1) R, (1)
26, 26, 26,
R, (1) R (1) OR, (t,, )
26, 26, 26,
R, (1) R, (1) oR,, (1)
26, 26, 20,
ORy, () ORy, (t,) ORy, (1)
20, 06, o0, |

(20)

where S; is determined using the dynamic sensitivity analysis method
that is introduced in Section 2.1.

The dynamic sensitivity-based nonlinear FE model updating method
is illustrated in Fig. 1. The process starts with the initial FE modeling
considering some nonlinear features, and the measured responses. By
using the calculated and measured responses, the response residual that
describes the analysis/real discrepancies is constructed. The dynamic
sensitivity analysis procedure is conducted to compute the dynamic re-
sponses and corresponding derivatives with respect to updating parame-
ters synchronously. The process continues with parameter estimation to
produce an incremental parameter for an updated nonlinear FE model.
Afterward, the implementation steps of the method are explained in de-
tail and the pseudo-codes for dynamic sensitivity analysis and nonlinear
FE model updating are illustrated in Appendix A.

Step 1: Construct the FE model of the nonlinear structure. The com-
mercial FE software, e.g., NASTRAN, is used for exporting the structural
matrices of the linear component that ensures the proposed method to
be applicable for complex structure. The nonlinear force is added to the
FE model using MATLAB, in which the nonlinear dynamic analysis and
updating are carried out.

Step 2: Determine whether the measured responses match well with
the calculated responses of the nonlinear model. If not, begin the
sensitivity-based nonlinear model updating procedure.

Step 3: Select the targeted response points and construct the residuals
between the measured and calculated responses.

Step 4: Select the updating parameters and conduct the nonlinear
response sensitivity analysis using the proposed formulations of first-
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or second-order sensitivity equations using the direct differentiation
method.

Step 5: Determine the parameter changes AO; using the direct
sensitivity-based optimization algorithm and estimate whether the re-
sponse errors or parameter estimation errors satisfy the convergence
criterion. If not, continue the procedure by re-analysis of the nonlinear
structure using the new parameters.

Step 6: Stop the nonlinear model updating procedure until any of
the response errors or parameter estimation errors satisfy the conver-
gence criterion. If not, repeat Steps 3 to 6 until the number of iterations
equals to the maximum number. The response error e, (e.g. 10-%) and
parameter estimation error e, (e.g. 107%) are defined as

e, = w % 100% @0
[IR™][,
ey = LAG 009 (22)
181l

The dynamic sensitivity analysis plays an important role in the pro-
posed nonlinear FE model updating procedure. The proposed method
is challenging to update the structures with non-smooth nonlinearity,
as the sensitivity of the dynamic responses with respect to non-smooth
parameters is hard to be computed using the direct sensitivity analysis
method. Two crucial issues are considered in the proposed nonlinear
model updating procedure. The first is that the measured time-domain
responses generally have some random noise. This negatively affects the
accuracy of the parameter updating. In this study, the polluted measure-
ments are simulated with zero-mean Gaussian white noise [46] added
to the calculated acceleration as

R" =R+ N, -N,,, - var(R) 23)

oise
whereR™is the vector of polluted acceleration; N; is the noise level; N,
is a standard normal distribution vector with zero mean and unit stan-
dard deviation; var(*) means the variance of the time history; R is the
vector of calculated acceleration. The other is the selection of the tar-
geted responses used in nonlinear FE model updating. As is well known,
chaotic behavior is exhibited in some nonlinear systems for specific val-
ues of parameters. When applying the time-domain responses as the tar-
geted outputs, the long-term behavior of nonlinear systems is often sen-
sitive to the change of parameters, but short-term behavior is not [47].
The selection of time points should be controlled by introducing a se-
lection control variable, e.g. y, into the objective function.

4

q

¢ YN,
Jon(0) = Y VVZ(,_Q)(Rq(tk,G) -R;’(zk))ng,with v € (rmm1] (24
1 k=1

1
2
q

in which the minimal y;,>Ny/N, ensures the existence of the optimal
solution.

3. Case studies

The performance of the proposed direct sensitivity-based approach
is demonstrated by updating three nonlinear models: Duffing-Van der
Pol oscillator, a magnetometer boom, and a cantilever plate with mul-
tiple nonlinear supports. For computational cases, the forced external
excitation or free vibration are simulated to three examples with given
initial conditions. For all case studies, the formulation and location of
the nonlinearity are assumed to be known beforehand, and the critical
issues are focused on the verification and implementation of the pro-
posed method. Discussions on the measurement noise and selection of
the targeted responses are also conducted to the proposed method.

3.1. Duffing-Van der Pol oscillator

Duffing-Van der Pol oscillator, a non-autonomous system, is the most
extensively studied example of nonlinear systems because of its wide
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Fig. 1. Flow chart for the direct sensitivity-based model updating using the time-domain responses combined with MATLAB and commercial FE software.

range of dynamic behaviors. Examples of such behavior arise in several
mechanical engineering applications [48,49]. The non-dimensional mo-
tion of the oscillator subject to harmonic external excitation load is the
following

2(1) = u(1 = x*®) %) + ax(r) + x> (1) = f cos (1) (25)

in which x(t) is the displacement of the oscillator, x(x>0) is the damping

parameter, a and f are the system parameters, f(f=1) and w(©w=0.79) is

the amplitude and frequency of the harmonic external excitation load.

Herein, the dynamic response sensitivity is calculated upon the first-

order form of the oscillator

{’.‘ RPN s (26)
y= ,u(l —-X (t))x(t) —ax(t) — px°(t) + f cos (wt)

The detailed formulations of the dynamic response and sensitivity
analysis are given in Appendix B. Initial conditions are x(0)=1 and
y(0)=0. The time interval is [0, 50]s, and the corresponding time step
is At=0.01, which guarantees the accuracy for computing the nonlinear
dynamic responses and sensitivities. The simulated dynamic responses
and corresponding dynamic sensitivities are solved by the ‘ode45’ func-
tion of MATLAB. The oscillator takes three main physical behavior by
adopting different values of system parameters, and the exact parame-
ters are given as follows.

e Single well, if «>0, >0: u=0.1, «=0.5, p=0.5;
e Double well, if <0, >0: y=0.1, «=-0.5, f=0.5;

Table 1
Initial parameters of the Duffing-Van der Pol
oscillator for different measurement noise.

Parameters " a p
Case 1 0.04 0.8 0.2
Case 2 0.06 -0.7 0.3
Case 3 0.4 3.6 -0.16

¢ Double-hump, if a>0, f<0: 4=0.5, a=3, p=-0.2.

The following three initial cases, which are listed in Table 1, are used
for nonlinear model updating considering measurement noise. Measure-
ment noise with different levels N;=0, 0.5%, 1%, 2%, 5% is enforced to
investigate the robustness of the proposed approach. The displacements
of three cases are considered as the targeted outputs, and the default
control variable for the selection of the targeted responses are y=0.2,
0.2, and 0.06 for case 1, 2, and 3, respectively. The phase diagrams
of the measured responses with high noise level (\N;=5%) are shown in
Fig. 2.

By adopting the proposed dynamic sensitivity-based model updating
method, the relative ratio for the updated parameters is presented in
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Measured (N=0)
Measured (N;=5%) Measured (N;=5%)
T T

5.0 T —

=~ 0.0F]

~ 0.0F

(@)

(b)

_5.0 1 1 1
-3.0

(©

Fig. 2. Phase diagrams of the measured responses with different noise level for three cases: (a) Case 1: 4=0.04, a=0.8, =0.2, N;=0 and 5%; (b) Case 2: 4=0.06,

a=-0.7, p=0.3, N;=0 and 5%; (c) Case 3: y=0.4, a=3.6, f=-0.16, N;=0 and 5%.

Table 2
The relative ratio for the updated parameters for Duffing-Van der Pol oscil-
lator with different measurement noise levels.

Noise level N=0 N;=0.5% N=1% N=2% N=5%
Case 1 T, 1.000 1.003 0.984 0.945 0.925
T, 1.000 0.999 0.999 0.989 0.987
Ty 1.000 1.000 1.001 1.010 1.014
Case 2 T, 1.000 1.001 1.000 0.997 0.999
T, 1.000 0.999 0.996 0.996 1.014
Ty 1.000 1.000 0.999 0.999 1.001
Case 3 T, 1.000 1.000 1.000 1.007 1.019
T, 1.000 1.000 1.000 1.000 0.999
Ty 1.000 0.992 0.997 1.016 0.969
Table 2 and defined as
gupdated
i
"= peac i €0 @n
i

where 6%*%t represents the exact parameter, and r denotes the relative
ratios retained three digits after the decimal point. The convergence cri-
terion of the response error and parameter estimation error are e,=107°
and e,=10%, respectively. The updated parameters are close to the ex-
act parameters when the relative ratio is close to 1. The relative error
also can be calculated by using the relative ratio ey=|r;-1|x100%. As
shown in Table 2, in case of no noise, the parameters are successfully
updated, nevertheless, the relative ratio of these cases reaches 0.992
(emax=0.8%) for noise level N;=0.5% and equals to 0.984 (e,,.,=1.6%)
for N;=1%, respectively. Results indicate that the parameters are well
updated when the observation with low noise. The maximum error
of the updated parameters increases with the increasing of the mea-
surement noise. When the high measurement noise levels are consid-
ered, e.g., N;=2% and N;=5%, the relative ratios are 0.945 (e;,,=5.5%)
and 0.925 (e,,,x=7.5%), respectively. The proposed dynamic sensitivity-
based nonlinear FE model updating method has limitation on the case
that the observations with high measurement noise.

To investigate the effect of the selection of the targeted responses,
the oscillator with measurement noise N;=1% but on different control
variable is considered. A small value of y denotes a small amount of
time-domain responses are selected as targeted responses. In this case, a
small to large control variable is considered: y=0.06, 0.2, 0.5, and 0.8,
and the numbers of targeted responses are 300, 1000, 2500, and 4000,
respectively.

The initial parameters are listed in Table 3 for the discussion on the
selection of the targeted responses. The measured and different targeted
response selections for three cases are shown in Fig. 3. The difference
between the initial and targeted responses increases with the increase
of the variable y. After the nonlinear model updating process, the corre-
sponding relative ratios are presented in Table 4 in detail. It is observed

Table 3
Initial parameters to the investigation on the selec-
tion of the targeted responses.

Parameters U a p
Case | 0.06 0.7 0.3
Case Il 0.06 -0.7 0.3
Case Il 0.3 4.2 -0.12

Table 4
The relative ratio of the updated parameters for Duffing-Van der Pol oscil-
lator with different selection control variable y.

r y=0.06 y=0.2 y=0.5 y=0.8
Case | T, 1.035 1.019 0.956 3.600
Ty 0.997 1.001 0.998 1.631
Ty 1.003 0.999 1.002 0.708
Case Il T, 1.066 1.000 1.001 0.999
T, 1.001 0.996 0.999 1.001
Ty 1.001 0.999 1.000 1.000
Case III T, 0.998 - -2.400 -2.400
Ty 1.004 - 0.774 1.854
Ty 1.055 - 3.600 3.600

that the parameters of case II can be accurately updated for these four
control variables based on the proposed method. The relative ratios for
cases I and III are far away from 1 with an increasing of the variable y,
and the parameters become unable to be updated when y increases to
0.8 (case I) and 0.2~0.8 (case III). This is explainable since the discrep-
ancy of the targeted responses, as shown in Fig. 3, increases with the
increase of y. Results show that, when the relative error of the initial
responses is significant, the accuracy of the updated parameters can be
ensured when using a small y>N,/N,.

3.2. Magnetometer boom

Considering a general nonlinear hinge in the space structure, the pro-
posed method is implemented for updating the local parameters of the
nonlinear hinge elements. As shown in Fig. 4, an example of a space
structure magnetometer, which is used to measure the strength and the
direction of the local magnetic field in satellites, such as LISA [50],
SMILE [51]. The articulated magnetometer generally consists of booms,
hinges, and sensors. The folded and deployed configuration of the mag-
netometer is shown in Fig. 4 (a) and (b), respectively.

As shown in Fig. 4(c), the three hinges are modeled using the non-
linear spring elements, and the booms are modeled using the sim-
ple beam elements. The geometrical and material parameters of the
fluxgate magnetometer are listed in Table 5. It should be noted that
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Fig. 3. Measured responses and the selected targeted responses
with different control variables: (a) Case I: 4=0.06, a=0.7, $=0.3;

(b) Case II: 4=0.06, a=-0.7, f=0.3; (c) Case III: y=0.3, a=4.2, f=-
0.12.

Fig. 4. An example of a fluxgate magnetometer in (a) folded
and (b) deployed configuration, and (c) the finite element
model with nonlinear spring elements.
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Table 5
Parameters of the fluxgate magnetometer.
Parameters Value Unit Parameters Value Unit
The length of the boom 1,2, and 3 (I) 1 m Density 1650 kg/m?
The radius of the boom 1 (R, ry) (20, 17.5) mm Elastic modulus 288 GPa
The radius of the boom 2 (R,, 1) (25, 22.5) mm Poisson’s ratio 0.266
The radius of the boom 3 (R, 15) (30, 27.5) mm Horizontal stiffness coefficients (k7 k")  (6x105, 8x108)  (N/m, N/m?)

Vertical stiffness coefficients (kj, k")

(8x105, 8x108)

Rotational stiffness coefficients (kj, k")

(9x10%, 9x107)

(N-m/rad, N-m/rad?)

16 — T T T x107
g | . ' ' |
E Initial c‘ondilions
E 80 N ) 1.5F
2 -
g =
= S
£ 0 < 0.0
15 s
8 <
o -8 15}
>
_ 1 1 i 1 3.0 L L L
16 0 1 2 3 0 0.25T 0.5T 0.75T T
X-Coordinate (m) Time (s)
Fig. 5. Initial displacement conditions for the periodic vibration (T=0.0747s) of (a)
the magnetometer boom: black curve means the structural configuration, green 5
curve means the initial conditions, the white dots are nodes of the FE model, 1.50 *10 . . :

and the green star is the selected node 16.

the basic beam-spring finite element model can also be applied to
a similar and complex space truss structure [52]. To consider the
nonlinearity in the hinges, the cubic springs are generally used for
the equivalent modeling in the beam-spring FE model [9,53]. The
stiffness coefficients of the hinge shown in Table 5 are pre-given
for the numerical analysis. The crucial issues on model updating
of the local nonlinear hinges are then discussed by the following
descriptions.

3.2.1. Modelling of boom with nonlinear hinges

The beam-spring FE model consists of 16 nodes, 12 Euler-
Bernoulli beam elements, and 3 nonlinear spring elements. The to-
tal DOF of the FE model is 45. The relationship between dis-
placement and nonlinear restoring force satisfies the following
equation,

F = Fiin+ fog = kx+kyx’ (28)

in which the kj, and k,; denote the linear and cubic nonlinear stiffness
coefficients, respectively. The linear one can be directly added into the
structural stiffness matrix, and the nonlinear one is introduced as fol-
lows.

The general configuration of the nonlinear spring elements which
are applied to connect several separate components is shown in
Fig. 4(c). Two types, internal type (element «) and grounded type
(element p), of the nonlinear spring element, is considered in this
paper. For every element, three physical DOF, i.e. , the horizontal,
vertical, and rotational DOF, are considered at every node like node
i and j. The nonlinear restoring force vector f,;(x(6,t),0) is written
as:

f(x(0,1),0) = Y £ (29)

where 7 is the nonlinear restoring force of the a™ nonlinear element,
which is obtained based on the relative or absolute displacements [16].
In this example, the nonlinear restoring force of the beam-like FE model

oa Jok,,

-0.75

-1.50 L . :
0 0.25T 0.5T 0.75T T
Time (s)
V)
-8
1.50 10
0.75
& 0.00
=
Q
-0.75
-1. 1 L L
500 0.25T 0.5T 0.75T T
Time (s)
(©)

Fig. 6. Dynamic sensitivity of y-acceleration at point 16 with respect to updat-
ing parameters: (a)aay/ak;,‘, (b)z)ay/ak;,l, (c)aay/ak;,‘.

is given by,

k" (x13 = x16)
£, =k (g =)’} (30)
K (6,5 — 918)3
ke (x16 = xla)j
K (y17 — y14)3
ke )
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Table 6

The relative ratio of the updated rotational stiffness coefficients of
the nonlinear hinges for different initial parameters.

Initial parameters (N®m/rad®) r Ty r3

Set 1: (5.85,4.5,13.95) x107 1.000 1.000 0.996
Set 2: (10.8,11.3,6.59) x107 1.000 1.000 0.997
Set 3: (4,16,5) x107 1.000 1.000 1.003
Set 4: (2,16,4) x107 0.998 1.005 1111

The rotational stiffness coefficients of the cubic terms for the three
hinges are selected as the updating parameters in this case. The initial
velocities are zero, and the initial displacements are shown in Fig. 5.
The time interval is [0, T], and the corresponding time step is At=T/Nr,
where T is the minimal period of the NNM motion and determined from
the shooting and pseudo-arclength continuation algorithm [54], Ny is
the number of the time interval. A small time-step is used for ensuring
the accuracy of the integration procedure [27], e.g., N;=3000. To eval-
uate how the initial parameters will affect the updated results, different
initial parameters (k;ll ,k;,z,k:”z) for three nonlinear hinges are used in
the nonlinear FE model updating.

The simulated dynamic responses and corresponding sensitivities are
solved by the proposed method in Section 2.1. The y-acceleration with-
out noise at point 16 is selected as the targeted outputs, and the selection
control variable is set to y=2/3 for the updating process. The sensitiv-
ities of acceleration at point 16 with respect to updating parameters
are shown in Fig. 6. The convergency criterion is the same as shown
in Section 3.1. By adopting the proposed nonlinear FE model updating
method, the relative ratios for the updated parameters considering dif-
ferent initial parameters, i.e., r=gupdated /gexact are presented in Table 6.
The relative errors for set 4 are 0.2%, 0.5%, and 11.1% for these three
parameters (k! ll’k;12’k;l3)’ respectively. The relative error is less than

0.5% for other sets. It is reasonable since the dynamic sensitivity to the

x1073
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Fig. 7. Measured and updated phase diagrams for different noise levels: (a)
N;=0.5%; (b) Ni=1%; (c) N;=2%; (d) N;=5%.

Table 7
The relative ratio of the updated rotational stiffness coefficients of
the nonlinear hinges for different noise levels.

Noise level (%) r Ty T3

Ni=0 1.000 1.000 0.996
N;=0.5 0.995 1.013 1.015
Ni=1 1.008 1.007 0.985
Ni=2 0.993 0.962 1.098
Ni=5 0.942 1.005 0.814

local parameters is small than that to global parameters (e.g., density
and modulus), and the dynamic sensitivity to kr shown in Fig. 6(c)
is small than that to other updating parameters. The results indicate
that the local hinge parameters can be well updated using the proposed
method for different initial parameters.

3.2.2. Effect of the measurement noise

The initial parameters of Set 1 in Table 6 are used in this subcase.
The measurement random noises with level N;=0.5%, 1%, 2%, and 5%
are considered. The y-acceleration with different noise levels at point
16 is selected as the targeted outputs, and the selection control vari-
able is set to y=2/3 for the updating process. The other parameters for
the proposed nonlinear FE model updating process are the same as the
above.

The updated and measured phase diagrams for the four sets are
shown in Fig. 7. The relative ratios of the updated hinge parameters are
represented in Table 7. As with the same performance in Section 3.1,
the local parameters can be successfully updated under low noise level,
herein, the maximum relative error equals to 1.5% (r3=0.985) for noise
N;=1%. Under high noise levels N;=2% and N;=5%, the relative ratios
are r3=1.098(e3=9.8%) and r;=0.814(e;=18.6%), respectively. It is ex-
plainable since the low sensitivity of the dynamic responses with re-
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Fig. 8. History of the relative error of parameters in the updating pro-

cedure for different selection control variables: (a) y=1/6 (b) y=1/3;
(© r=2/3; (d) y=1.

Iteration

(b)

Iteration

(@

Table 8

The relative ratio of the updated rotational stiffness co-
efficients of the nonlinear hinges for different selection
control variables.

n

§)

3

1/6 1.001 0.997 0.954
1/3 1.001 0.998 0.958
2/3 1.000 1.000 0.996
1 1.000 1.000 0.999

spect to the rotational stiffness coefficients of the local nonlinear hinges,
which is shown in Fig. 6. The results indicate that the proposed approach
works well under different measurement noise levels.

3.2.3. Effect of the selection of the targeted responses

The issue of the selection of the targeted responses used in nonlinear
FE model updating is investigated in this subcase. The initial parameters
of Set 1 in Table 6 are used in this subcase. The noise level is set to zero,
and the selection control variable is y=1/6, 1/3, 2/3, and 1. The time
interval is also [0, T], and other parameters for the nonlinear FE model
updating process are the same as the Section 3.2.1.

As shown in Fig. 1, the procedure stops until any of the response
errors or parameter estimation errors satisfy the convergence criteria,
which are given in Section 2.2. After four steps of iteration, the stiffness
coefficients converge for all sets of control variables. The history of the
relative errors of the updating parameters is shown in Fig. 8. Updated
parameters compared with the exact values are presented in Table 8. In
the magnetometer boom case, the relative errors of initial responses for
different selection control variables calculated using Eq (21) are 0.89%,
0.97%, 1.16%, and 1.41%, respectively. These initial response errors are
smaller than that of the first case, and all the parameters can be accu-
rately updated using the proposed method. The maximum error of up-
dated parameters decreases with the increases of the control variables,

84 nodes x3DOFs

=252DOFS ) 125 in

E=10.5x10° psi
#=0.33
p=0.101 Ib/in*

Combined cubic and
quadratic nonlinearities

Fig. 9. A cantilever plate with multiple nonlinear supports.

and e, is 4.6% in the set of y=1/6 for k;/3' With a small relative error
of initial responses, the updating results of parameters are becoming sta-
ble when the control variable y is larger than 2/3. Results show that the
accurate nonlinear FE model can be determined based on the proposed
method after a small amount number of iterations.

3.3. Cantilever plate with multiple nonlinear supports

In order to show the applicability of the present method, a cantilever
plate with multiple nonlinear supports is shown in Fig. 9. The linear
component of the structure was proposed by Kim [55], and the elastic
supports with combined cubic and quadratic nonlinear stiffness effect
located at points A, B, and C were considered in this case. The nonlinear
force for each support is calculated using equation: f,d:kcx3+kqx2, and
six parameters are selected to be updated. The material and geometric
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Fig. 10. Dynamic sensitivity of the z-
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Table 9
Exact and initial values of the cubic and quadratic pa-
rameters.
Parameters Exact Initial
k! (Ibffin®) 1x105 1.2x10°
ki (Ibffin?) 5x10% 5.4x10*
k2 (Ibffin3) 1x10° 0.7x10°
K2 (Ibffin?) 5x104 4.7x10%
i3 (Ibffin?) 1x10° 0.8x10°
k3 (Ibffin?) 5x104 5.2x10*

properties are given in Fig. 9, and the structure is modeled by 12x6
plate FE elements. Three displacement components, i.e., a deflection
(w,) and two in-plane rotations (6, and 6’y), are considered in the plate
FE element, and the total DOFs of the structure is 252. The pre-given
exact and initial values of the updating parameters are listed in Table 9.

The forced vibration under external force, f () = 10sin(w, 1), is con-
sidered in this case, and the initial displacements and velocities are set
to zero. w; is the first natural frequency of the linear components of
the structure, w;=0.37Hz. The time interval is [0, T;1, and the corre-
sponding time step is At=T;/Ny, where T; and Ny are T;=1/w;, and
N;=3000, respectively. The z-direction accelerations with the different
noise levels, N;=0, and N;=2%, at points A, B, and C, are selected to up-
date these six parameters. Using the direct sensitivity analysis approach,
the nonlinear dynamic responses and corresponding sensitivities can be

0.57, 0.75T, T,
Time (s)
)
Table 10

The relative ratio and errors for the updated parameters with
different measurement noise levels.

Parameters N;=0 N;=2%
r e (%) r e (%)

k! 1.010 1.0 0.989 1.1
k; 1.000 0 1.000 0

K2 0.987 1.3 0.945 5.5
kg 1.000 0 1.001 0.1
K 1.010 1.0 0.982 1.8
K 1.000 0 1.000 0

calculated synchronously. The dynamic sensitivity of the acceleration at
point B with respect to six updating parameters are shown in Fig. 10.
The magnitudes of dynamic sensitivity of the acceleration with respect
to quadratic parameters are larger than that of the acceleration with re-
spect to cubic parameters. The accuracy of the updated cubic parameters
has been affected by this situation. The initial error of the selected accel-
erations with full data points is 10.83%, and these updating parameters
are also of the local nonlinear parameters. The selection control vari-
able, therefore, is set to y=1 to ensure the accuracy of the nonlinear FE
model updating.

Table 10 illustrate the relative ratio and error of the updated param-
eters compared to the exact values. These errors for noise-free and 2%
simulated noise cases are less than 6%, indicating that a good agreement
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between the updated and exact parameters can be obtained using the
proposed method. The maximum error is 5.5% for k? (N;=2%) among
all the parameter updating results, illustrating that the inaccuracy of
updated nonlinear parameters is increased with an increase in the noise
level, and the insensitive parameters are more affected by the measure-
ment noise. The acceleration with different noise levels calculated from
the updated nonlinear FE model and the exact responses are compared
and shown in Fig. 11(a) and (b), respectively. Results show that the pro-
posed dynamic sensitivity-based nonlinear FE model updating method is
applicable for updating a complex structure modelled using commercial
FE software, even under a low noise level effect.

4. Conclusion

A dynamic sensitivity-based model updating approach for nonlinear
structures is proposed in this paper. The updating method is carried out
using the time-domain responses. The effects of the nonlinear structural
parameters on the time-domain responses are evaluated based upon the
dynamic sensitivity analysis, which is directly and simultaneously cal-
culated from the differentiation of the first-order or second-order equa-
tions of motion.

The accuracy and advantage of the proposed method are verified
using different numerical models. The effect of the noise in the time-
domain responses and the selection scheme of the targeted responses
points are investigated. Based on the simulation results, the following
conclusions are obtained. (1) The time-domain responses can be adopted
for nonlinear FE model updating even the observations are with noise.
(2) The scheme for selecting the response points guarantees the accuracy
of the updated nonlinear FE model when considering different relative
errors of the initial responses. (3) A small amount number of iterations
of the updating process are the advantage of the proposed method.

The proposed nonlinear FE model updating approach is applicable to
the structure whose dynamic sensitivity is calculated by direct differen-

tiation. The proposed approach, however, does not account for the non-
smooth nonlinearity and the actual measurement noise. Experimental
verification on the proposed approach for a complex structure consid-
ering gap and contact is worthy of further study.
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Table A1
Pseudo-code for nonlinear dynamic response and sensitivity analysis.

Pseudo-code 1 Nonlinear dynamic response and sensitivity

Input: Initial conditions: X, %,, S, S,, So; Structural matrices: M, C, K; External excitation: f(t); Nonlinear elements parameters: §; Newmark scheme parameter:

t, Np, B, a

(;utput: Calculated nonlinear responses: X,x,¥; Dynamic sensitivities: S,$,S

Begin

1: £,)0=f,(X0.%,,0) // Initial nonlinear force

2: %,=M"1(f,-Cx,-Kx,-f,,;o) // Initial acceleration

3: At=t;/Ny [[ Time-step

4: for time=1 to t; /| Final time

5: t;,1:=t;+At /[ Computation time

6: %, =%, +(1-a) ALX;; X;,1:=X;+Atk,+(1/2-p)At?%;; %,,,:=0; [/ Prediction

7: fiivr:=Fu(Xi11.%,,,0); Kp [/ Predicted nonlinear force and tangent stiffness matrix

8: efi=||Mx,, | +Cx,, +KX; 1 +Ei 1 i |I/|IMX,, +Cx,, +KX;,+f,;;,1 1| // Relative error of prediction responses
9: if eR>¢ then

10: Kf:=aAlr2 M+ ﬁc + K+ K; /[ Equivalent stiffness matrix for nonlinear dynamic response calculation

11: FRi=Mg,,, + C%,,, +Kx,,, +1f, —f.,, [/ Equivalent residual vector for nonlinear dynamic response calculation
12: Ax:=-(K®)"'FX /| Increment displacement calculation

131 X, 1=K, +AX; X,y =X, +af(BADAX; %, :=%,,,+1/(fAt?)AX; [| Correction

14: £, :=f,(X;,1.%,,1,0); Ky [/ Updated nonlinear force and tangent stiffness matrix

15: efi=||M&,,  +Ck,, +KX; 1 +E5i,1-Fiq ||/[IMK, +CX, . +KX; ; +£,;,11| // Relative error of updated responses

16: end if

17: I ivtr Jiin /| Jacobian matrices of nonlinear force with respect to displacement and velocity

18: W || Derivative of nonlinear force with respect to updating parameters

19: K§:=/NA+>2M1+ ﬁ(cl +‘J,-“,+l) + (IKTJX_M) /| Equivalent stiffness matrix for dynamic sensitivity calculation
M(= 7578 = 55 S + (L= 55)S)
20: Fi:= +(C+Jx,+,)(—ﬁ5, +(1- %)S, + Ar(1 - 2“7)5,) /| Equivalent residual vector for dynamic sensitivity calculation

Ol (X1 Kig1)

+
20
21: S;,1:=-(K?)~'F?// Displacement sensitivity

22: 8y i=50 S =S+ (1 - %)S, + A1 — ﬁ)ﬁ, /| Velocity sensitivity
23: S,H::ﬁ(s,ﬂ -S,)- ﬁs, - (ﬁ - 1), || Acceleration sensitivity
24: end for

25: end

Table A2
Pseudo-code for nonlinear FE model updating based on direct sensitivity analysis.

Pseudo-code 2 Direct sensitivity-based nonlinear FE model updating

Input: Measured responses: R™; Initial parameters: 6,; Selection control variable: y; Maximum number of iterations: N; Nonlinear dynamic responses and
sensitivity analysis parameters: Xo, %, t;, N, K, M, C, f(t), f

Output: Updated parameters: g“rdated; Updated responses: Rupdated

Begin

1: r,:=1 to yNy/| Selected responses points

2: for iteration=1 to N // Maximum number of iterations

3: n+l:=n

4: Ry, S, [/ Calculated nonlinear dynamic responses and sensitivities using Xo, %o, t; Nr, K, M, C, f(¢), f,; in Pseudo-code 1
5: r,:=R™-R, /| Response residual

6: AG<—min J,,,,(0) = % Zf]vz“] Z,’L’] Il W) (RS (1)) = Rq(tk,e))||§ // Updating parameters estimation using the optimization method in MATLAB
7: 6,,1.=6,+A06 [| Updated parameters

8: r::HR””];l;zH: % 100% /| Responses error

9: eg:% % 100% [/ Parameter estimation error

10: if e, or e, < tolerance then

11: Return

12: else

13: Continue

14: end if

15: end for

16: end

Appendix A. Pseudo-code for direct sensitivity-based nonlinear FE
model updating

Tables Al and A2. §=19o0x

Appendix B. Dynamic sensitivity analysis of Duffing-Van der Pol
oscillator

The first-order form of the Duffing-Van der Pol oscillator is given in
Eq. (26). The new unknowns are given as follows

(B1)
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where
T
6_x= s a x =[511 S12 513]T
20 ou da ap (B2)
ay ay ay|”
a—y= 2 e s =[521 S22 523]T
20 ou da ap

in which the updating parameters herein are 6=[y, «, f17. Finally, the
first-order equations of motion and sensitivity have the form

) . v N
y M(l—xz)y—ax—ﬂx3+fcos(cot)

S11 $21

Sl _ 52 L
S13 523

$9 (1=x2)y—2uxysy; + u(1 = x?)sy; —asyy —3px%s),
S22 =2pxysiy + H(1 = x*)sp = x = as;y = 3px%s

$y3 —2uxys;3 + ,u(l - xz)s23 —as;3 — x> =3fx%s 3

(B3)

The initial conditions are given in advance, so the initial sensitivities

of di

splacement and velocity are zero. The dynamic and sensitivity equa-

tions (B3) can be solved using Runge-Kutta method, which is integrated

into

the ‘ode45’ function of MATLAB.
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