孙东科 教授

发布者:机械工程学院发布时间:2017-08-20浏览次数:7279


孙东科


研究兴趣

1.凝固过程建模与模拟

教授、博士生导师



2.高能束增材制造技术

办公室

东南大学九龙湖校区机械楼230



3. 高通量集成计算方法

dksun@seu.edu.cn



4. 介尺度复杂流体流动(与马普所Yong Wang博士联合培养

主  页

www.dongkesun.com



5. 统计推断与机器学习(与普渡大学Guang Lin教授联合培养

江苏省南京市江宁区东南大学机械工程学院,邮编211189



2010年毕业于东南大学,获工学博士学位,主要研究方向为:介尺度复杂流体流动的建模与模拟、金属凝固微观组织形成的数值模拟等。先后在上海交通大学、美国普渡大学从事博士后研究工作。多年来,他专注于金属凝固过程的建模与模拟,针对凝固过程中的枝晶生长、熔体对流、热质输运及缺陷形成等问题开展研究,现已成功将相场方法、元胞自动机方法与格子玻尔兹曼方法结合并用于金属熔体对流传热与微观组织形成规律的研究。在前辈及朋友的指导和帮助下,他较早将格子玻尔兹曼方法应用于晶体生长动力学研究领域。近年来,他针对传统制造技术研发所面临的周期长、成本高、偶然性大且长期依赖于经验积累的问题,通过借助于人工智能与大数据技术建立以微观物理机制为基础的数值模型,实现了对材料设计与制造成型过程中所发生的工艺、结构和性能间耦合关系的定量描述。这不但可以突破装备与工艺研发模式的转变,即从以大量经验积累和简单循环试错为特征的“经验寻优”传统模式向以数字驱动和理性设计的“科学寻优”模式转变,而且能够以产品需求为导向实现装备及零部件的快速设计与智能制造,从而加速智能制造装备的产业化进程,提升制造、能源与材料等领域的技术突破。他的研究兴趣还包括以动理论为基础的数学模型、数值方法以及复杂流体的建模与模拟研究。这些内容既是介尺度科学与工程的核心问题,也是机械、材料、数学、计算机和生物医学等学科的新兴交叉点,并可为机械、材料、能动、生医等学科领域的发展提供全新思路和研究方法。



工作经历

2016/12–   今,   东南大学,    机械工程学院, 教  授

2015/11–2016/12,美国普渡大学,机械工程学院, 博士后

2014/10–2016/11,上海交通大学,材料科学与工程学院,博士后

学习经历

2004/09–2010/05东南大学,材料科学与工程学院,硕博连读,博士

2000/082004/06东南大学机械工程系,大学本科,学士

讲授课程

本科生课程: 程序设计与算法语言(C++面向对象,本科生基础课),材料工程数值模拟基础(本科生专业基础课)

研究生课程:流体力学(静力学、动力学与传热学,研究生学位课)

人才培养

 •本科生

有意申请本课题组免试生(含直博生)的本科生可申请参加本课题组的课外研学计划(SRTP)或其他类型的科研项目;参加本课题组科研项目者,每周投入工作时间不得少于20小时,且每次连续工作不少于2小时;有优秀成果及展现学术潜力者,可获得继续读研深造、学术会议、出国交流的推荐与资助资格。

 •研究生

机械、材料、数学、物理、化学或计算机等相关学科优秀本科生,思想端正、身心健康、热爱科学、勇于探索、乐观开朗,积极进取,具有较强的科研能力或发展潜力;有英语成绩(CET4/6TOEFLIELTS)者或英语阅读、写作或口语熟练者优先;优先招收推免生、直博生和硕博连读生。

 •博士后

机械、材料、力学、数学或计算机等学科专业领域;已正式获得博士学位且获得时间不超过三年者,已通过博士学位论文答辩且半年内能获得博士学位者;对博士后提供必要的科研、会议与交流等活动资助;在站待遇高于学校标准,特别优秀者可面议待遇。

交流合作

与美国PurdueUniversity West LafayetteQingyou Han教授、Guang Lin教授,德国Max Planck Institute for Dynamics and Self-OrganizationYong Wang博士,英国School of Engineering at University of EdinburghTimm Krüger博士 (Lecturer),澳大利亚University of New South WalesCanberraFang-Bao Tian博士 (Senior Lecturer)以及美国CompuThermLLC公司的Shuanglin Chen博士等著名学者、研究机构和科技公司建立了密切的学术合作关系。

审稿期刊

Advances in Water Resources

Advances in Applied Mathematics and Mechanics

Applied Mathematical Modelling

Applied Thermal Engineering

Chinese Physics B

Communications in Computational Physics

Computational Materials Science

International Journal of Computational Materials Science and Surface Engineering

International Journal of Heat and Mass Transfer

International Journal of Manufacturing Technology and Management

International Journal of Numerical Methods for Heat and Fluid Flow

International Journal of Thermal Sciences

Journal of Hydrodynamics

Journal of Porous Media

Nanoscale

Nanoscale Research Letters

Physics of Fluids

TheCanadian Journal of Chemical Engineering

The European Physical Journal E

传感技术学报

钢铁研究学报(英文版)

西南交通大学学报

浙江科技学院学报

论文节选

  1. Sun DK, Xing H, Dong XL, Han YS, An anisotropic lattice Boltzmann - phase field scheme for numerical simulations of dendritic growth with melt convection. International Journal of Heat and Mass Transfer, 2019, 133: 1240-1250. SCI入藏号WOS:000460710100108, EI Accession number: 20190306372113.

  2. Sun DK*, Chai ZH, Li Q and Lin G, A lattice Boltzmann–cellular automaton study on dendrite growth with melt convection in solidification of ternary alloys. Chinese Physics B, 2018, 27(8): 088105. SCI入藏号WOS:000442033100005,EIAccession number: 20183405716754.

  3. Sun DK*, Wang Y, Yu HY, Han QY, A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection. International Journal of Heat and Mass Transfer, 2018, 123: 213–226.SCI收录号WOS:000434887000018, EI Accession number: 20181004860237.

  4. Sun DK*, Pan SY, Han QY and Sun BD*, Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme. International Journal of Heat and Mass Transfer, 2016, 103: 821–831. SCI收录号000368953400031.

  5. Sun DK*, Wang Y, Dong AP and Sun BD. A three-dimensional quantitative study on the hydrodynamic focusing of particles with the immersed boundary-lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2016, 94: 306-315. SCI收录号000368953400031. EI收录号20155201712141.

  6. Sun DK*, Zhu MF, Wang J and Sun BD. Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. International Journal of Heat and Mass Transfer, 2016, 94: 474-487. SCI收录号WOS:000368953400047. EI收录号20155101679631.

  7. Sun DK*, Zhang QY, Cao WS and Zhu MF. Simulation of dendritic growth with melt convection in solidification of ternary alloys. Chinese Physics Letters, 2015, 32 (6): 068103. SCI收录号000358597200043.

  8. Sun DK, Bo Z*. Numerical simulation of hydrodynamic focusing of particles in straight channel flows with the immersed boundary-lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2015, 80: 139-149. SCI收录号000345202100014, EI收录号20144200103906.

  9. Sun DK*, Wang Y, Jiang D, Xiang N, Chen K and Ni ZH. Dynamic self-assembly of particles in an expanding channel flow. Applied Physics Letters, 2013, 103: 071905. SCI收录号000323769000020, EI收录号20133516662071.

  10. Sun DK*, Xiang N, Jiang D, Chen K, Yi H and Ni ZH. Multi relaxation time lattice Boltzmann simulation of inertial secondary flow in a curved microchannel. Chinese Physics B, 2013, 22(11): 114704. SCI收录号000327485400047, EI收录号20134917055097.

  11. Sun DK*, Jiang D, Xiang N, Chen K and Ni ZH. An immersed boundary - lattice Boltzmann simulation of particle hydrodynamic focusing in a straight microchannel. Chinese Physics Letters, 2013, 30(7): 074702. SCI收录号000321763700032.

  12. Sun DK*, Xiang N, Chen K and Ni ZH. Lattice Boltzmann modeling of particle inertial migration in a curved channel. Acta Physica Sinica, 2013, 62(2): 024703. (in Chinese) SCI收录号000316815000050.

  13. Sun DK, Zhu MF*, Pan SY, Yang CR and Raabe D. Lattice Boltzmann modeling of dendritic growth in forced and natural convection. Computers and Mathematics with Applications, 2011, 61(12): 3585-3592. SCI收录号000292583300016, EI收录号20112514070927.

  14. Sun DK, Zhu MF*, Dai T, Cao WS, Chen SL, Raabe D and Hong CP. Modelling of dendritic growth in ternary alloy solidification with melt convection. International Journal of Cast Metals Research, 2011, 24 (3/4): 177-183. SCI收录号WOS:000293333900009, EI收录号20113114195046.

  15. Sun DK, Zhu MF*, Pan SY and Raabe D. Numerical modeling of dendritic growth in alloy solidification with forced convection. International Journal of Modern Physics B, 2009, 23(6/7): 1609-1614. SCI收录号000266134700137.

  16. Sun DK, Zhu MF*, Yang CR, Pan SY and Dai T. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58: s285-s291. (in Chinese) SCI收录号000270312900047.

  17. Sun DK, Zhu* MF, Pan SY and Raabe D. Lattice Boltzmann modeling of dendritic growth in a forced melt convection. Acta Materialia, 2009, 57(6): 1755-1767. SCI收录号000264677600006 , EI收录号20091011940525.

  18. Sun DK and Zhu MF*. Cellular automaton-lattice Boltzmann model for modeling of dendritic growth in flowing melt. The Chinese Journal of Nonferrous Metals, 2007, 17(s1): 84-89. (in Chinese)

  19. Sun DK, Zhu MF*, Raabe D and Hong CP. Cellular automaton - lattice Boltzmann model for the simulation of dendritic growth with melt convection. Proceedings of the 7th Pacific Rim International Conference on Modeling of Casting and Solidification Processes, Dalian University of Technology, Dalian, China, August 19-22, 2007.

  20. TaoHu, MengdanHu, SisiZhou, DongkeSun*, An Immersed Boundary-Lattice Boltzmann Prediction for Particle Hydrodynamic Focusing in Annular Microchannels. Chinese Physics Letters, 2018,35(10): 108101. SCI收录号WOS:000448135200021

  21. ChaiZH*, Sun DK, Wang HL, Shi BC. A comparative study of local and nonlocal Allen-Cahn equations with mass conservation. International Journal of Heat and Mass Transfer, 2018, 122: 631–42. SCI收录号000431933500055

  22. Zhang QY, Sun DK and Zhu MF*. A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena. Chinese Physics B, 2017, 26(8): 084701. SCI收录号WOS:000407239300001,EI收录号20173304051709.

  23. Zhang QY, Sun DK, Zhang YF and Zhu MF*. Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method. Chinese Physics B, 2016, 25(6): 066401. SCI收录号000377876400043,EI收录号20162602538014.

  24. Pang YP, Sun DK, Gu QF, Chou K-C, Wang XL and Li Q*. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended Jonhson−Mehl−Avrami−Kolomogorov model with analytical solutions. Crystal Growth & Design, 2016, 16 (4): 2404-2415. SCI收录号000373747700076, EI收录号20161802341016.

  25. Wang Yong*, Sun DK, He YL and Tao WQ. Lattice Boltzmann study on thermoacoustic onset in a Rijke tube. The European Physical Journal Plus (2015) 130(1): 1-10. SCI收录号000348344300001.

  26. Zhang QY, Sun DK, Zhang YF and Zhu MF*. Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays. Langmuir, 2014, 30 (42), 12559-12569. SCI收录号000347744100013, EI收录号20144500154833.

  27. Zhu MF*, Sun DK, Pan SY, Zhang QY, Raabe D. Modelling of dendritic growth during alloy solidification under natural convection. Modelling and Simulation in Materials Science and Engineering, 2014, 22: 034006. SCI收录号000335952900008, EI收录号20141717618173.

  28. Jiang D, Sun DK, Xiang N, Chen K, Yi H and Ni ZH*. Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel. Biomicrofluidics, 2013, 7: 034113. SCI收录号000321145800014, EI收录号20132916517455.

  29. Chen HN, Sun DK, Dai T and Zhu MF*. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio. Acta Physica Sinica, 2013, 62(12): 120502. (in Chinese) SCI收录号000321185600007.

  30. Wu W, Sun DK, Dai T and Zhu MF*. Modelling of dendritic growth and bubble formation. Acta Physica Sinica, 2012, 61(15): 3394-3401. (in Chinese) SCI收录号000309089100006.

  31. Zhou FM, Sun DK and Zhu MF*. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica 2010, 59(5): 3394-3401. (in Chinese) SCI收录号000277733700073.

  32. Yang CR, Sun DK, Pan SY, Dai T and Zhu MF*. CA–LBM model for the simulation of dendritic growth under natural convection. Acta Metallurgica Sinica 2009, 45(1): 43-50. (in Chinese) SCI收录号000263767800007, EI收录号20091111955815.

  33. Zhao HL, Sun DK, Pan SY, Dai T and Zhu MF*. CA-LBM modeling of solutal dendritic growth with forced convection. Journal of Southeast University (Natural Science Edition), 2009, 39(2): 255-261. (in Chinese) EI收录号20091812064354.

  34. Su M, Sun DK and Zhu MF*. Application of lattice Boltzmann method in modeling of dendritic growth. Materials for Mechanical Engineering, 2007, 31(2): 75-78. (in Chinese)

  35. Qiu S, Ge NJ, Sun DK, Zhao S, Sun JF*, Guo ZB, Hu Ke and Gu Ning. Synthesis and characterization of magnetic polyvinyl alcohol (PVA) hydrogel microspheres for the embolization of blood vessel. IEEE Transactions on Biomedical Engineering, 2016, 63(4): .730-736. SCI收录号000372983800005, EI收录号20161602270843.

  36. Xiang N, Chen K, Sun DK, Wang SF, Yi H and Ni ZH. * Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel. Microfluidics and Nanofluidics, 2013, 14: 89-99. SCI收录号000313798700008, EI收录号20132416407255.

  37. Sun JF*, Dong J, Sun DK, Guo ZR and Gu N. Magnetically mediated vortexlike assembly of gold nanoshells. Langmuir, 2012, 28(16): 6520-6526. SCI收录号000303091300002, EI收录号20121814977036.

  38. Wu W, Zhu MF*, Sun DK, Dai T, Han QY and Raabe D. Modelling of dendritic growth and bubble formation. IOP Conf Series: Materials Science and Engineering, 2012, 33: 012103. SCI收录号000307779900103, EI收录号20132116361118.

  39. Zhu MF*, Pan SY, Sun DK, Gui ZL and Zhou FM. Numerical modeling of microstructure evolution in alloy solidification. Advances in Heterogeneous Material Mechanics, 2011: 643-650. SCI收录号000297713100159, EI收录号20124015499973.

  40. Zhu MF*, Pan SY, Sun DK and Zhao HL. Numerical simulation of microstructure evolution during alloy solidification by using cellular automaton method. ISIJ International 2010, 50 (12): 1851-1858. SCI收录号000285666400018, EI收录号20110913712196.

  41. Xiang N, Yi H, Chen K, Sun DK, Jiang D, Dai Q and Ni ZH*. High-throughput inertial particle focusing in a curved microchannel: Insights into the flow-rate regulation mechanism and process model. Biomicrofluidics, 2013, 7: 044116. SCI收录号000323907600018, EI收录号20133716726952.

  42. Wu JC, Dong YS*, Lin PH, Sun DK and Gao F. Effects of cooling ways on microstructure of Zn-Cu peritectic alloy. Special Casting & Nonferrous Alloys, 2005, 25(6): 326-328. (in Chinese) EI收录号2005289209455.

  43. Xiang N, Chen K, Dai Q, Jiang D, Sun DK, Ni ZH*. Inertia-induced focusing dynamics of microparticles throughout a curved microfluidic channel. Microfluidics and Nanofluidics, 2014, 18: 29-39. SCI收录号000348977700004, EI收录号20143600007197.

  44. Chen K, Xiang N, Quan YL, Zhu XL, Sun DK, Yi H, Ni ZH*. Directed transport and location-designated rotation of nanowires using AC electric fields. Microfluidics and Nanofluidics, 2014, 16: 237-246. SCI收录号000329406900024, EI收录号20141817652459.

  45. Chen K, Quan YL, Song CF, Xiang N, Jiang D, Sun DK, Yang JK, Yi H, Ni ZH*. Accurate control of individual metallic nanowires by light-induced dielectrophoresis: Size-based separation and array-spacing regulation. Sensors and Actuators A: Physical, 2015, 225: 139-147. SCI收录号000352666100018, EI收录号20151100639143.

  46. 朱鸣芳*,汤倩玉,张庆宇,潘诗琰,孙东科,合金凝固过程中显微组织演化的元胞自动机模拟,金属学报,201610):1297~1310.SCI收录号WOS:000390080900014.

  47. Tao Hu, Yi Ye, Ke Chen, Feifei Long, Wen Sang, Yunlong Zhou *, Dongke Sun* and Zhonghua Ni *. Visual detection of glucose based on quantum dots aerogel in microfluidic chips, Anal. Methods, 2018, 10, 5749. SCI收录号WOS:000453243200001.

学术会议

  1. Cao YT, Wu JY, Xing H,Sun DK*. Pattern Transition between seaweeds to dendrites in solidification : a latticeBoltzmann model phasefield study. The Chinese Materials Conference, Chengdu, Jul 10-14, 2019 (in Chinese, the first author is a junior student)

  2. Wu JY, Cao YT, Xing H,Sun DK*. A unified model for convective dendritic growth based on latticeBoltzmann method and phasefield theory. The Chinese Materials Conference, Chengdu, Jul 10-14, 2019 (in Chinese, the first author is a junior student)

  3. Sun DK, Wang XZ, Du R, Xing H. The anisotropiclatticeBoltzmann – phasefieldmethod: From anisotropiclatticeBoltzmann modelto phasefield model. The Chinese Materials Conference, Chengdu, Jul 10-14, 2019 (in Chinese)

  4. Sun DK, Zhang QY, Chen SL and Zhu MF. A lattice Boltzmann scheme for modeling dendritic growth and bubble formation with melt convection in solidification of alloys. International Symposium on Thermodynamics, Phase-Field Modeling and Crystal Plasticity, October 24-26th, 2018. (invited)

  5. Sun DK, DuR and Zhu MF. A kinetic BGK scheme for the liquid-solid phase transition of alloys in the presence of melt convection. The Chinese Materials Conference, Xiamen, Jul 12-18, 2018. (invited, in Chinese)

  6. Sun DK,Cao WS,Chen SL and Zhu MF. Modeling of dendritic growth in solidification of alloys with the lattice Boltzmann method. The Chinese Materials Conference, Xiamen, Jul 12-18, 2018. (invited, in Chinese)

  7. Sun DK, Zhu MF, Han QY and Sun BD. Lattice Boltzmann Modeling of Dendritic Growth and Bubble Formation in Solidification of Alloys. The Young Scholars Forum of 2017: Annual Conference of Nonferrous Metals Society of China, Changsha, China, Sep 20-21, 2017. (invited, in Chinese)

  8. Sun DK, Zhu MF, Han QY Sun BD. Lattice Boltzmann Modeling of Microstructure Evolution during Solidification of Alloys. The 8th International Conference on Physical and Numerical Simulations of Materials Processing, Seattle, USA, Oct 14-17, 2017. (invited)

  9. Sun DK and Han QY. Modeling and simulation of bubble formation during solidification of binary alloys with the lattice Boltzmann method. International Scholar Research Symposium. West Lafayette IN, USA, March 8, 2016.

  10. Zhu MF, Pan SY, Sun DK. Modeling of microstructure evolution during alloy solidification. Advances in the Science and Engineering of Casting Solidification. Edited by: Nastac L, Liu BC, Fredriksson H, et al. TMS (The Minerals, Metals & Materials Society), 2015.

  11. Sun DK and Ni ZH. Modeling of hydrodynamic focusing in microchannel flows. International Symposium on Fundamental Issues of Multiphase Flows, Wuhan, China, June 12-14, 2014.

  12. Sun DK, Xiang N and Ni ZH. Numerical simulation of hydrodynamic focusing of particles in straight channel flows. International Symposium on Turbulent Particle-Laden Flow and Coal Combustion, Wuhan, China, June 3-5, 2013.

  13. Zhu MF, Pan SY, Sun DK, Gui ZL and Zhou FM. Numerical modeling of microstructure evolution in alloy solidification. Proceedings of the 3rd International Conference on Heterogeneous Material Mechanics (ICHMM-2011), Shanghai (Chongming Island), China, May 22-26, 2011.

  14. Sun DK, Zhu MF, Dai T, Cao WS, Chen SL, Raabe D and Hong CP. Modeling of dendritic growth in ternary alloy solidification with melt convection. Proceedings of the 8th Pacific Rim International Conference on Modeling of Casting and Solidification Processes, Pusan, Korea, April 12-15, 2010.

  15. Sun DK, Zhu MF, Pan SY, Yang CR and Raabe D. Modeling of free dendritic growth in a gravity environment by lattice Boltzmann method. The 6th International Conference for Mesoscopic Methods in Engineering and Science (ICMMES-2009), Guangzhou, China, July 13-17, 2009.

  16. Sun DK, Zhu MF, Pan SY and Raabe D. Lattice Boltzmann modeling of dendritic growth in forced and natural convection. The 6th International Conference for Mesoscopic Methods in Engineering and Science (ICMMES-2009), Guangzhou, China, July 13-17, 2009.

  17. Sun DK, Zhu MF, Pan SY and Raabe D. Numerical modeling of dendritic growth in alloy solidification with forced convection. The 5th International Conference on Advanced Materials and Processing (ICAMP-5), Harbin, China, September 3-6, 2008.

  18. Sun DK, Zhu MF, Raabe D and Hong CP. Modeling of dendritic growth in the presence of convection using a cellular automaton - lattice Boltzmann model. The 5th Sino-Korean Conference on Advanced Manufacturing Technology, South China University of Technology, Guangzhou, China, October 11-13, 2007.

  19. Sun DK, Zhu MF, Raabe D and Hong CP. Cellular automaton - lattice Boltzmann model for the simulation of dendritic growth with melt convection. Proceedings of the 7th Pacific Rim International Conference on Modeling of Casting and Solidification Processes, Dalian University of Technology, Dalian, China, August 19-22, 2007.

国家专利

专利号

专利名称

完成时间

专利类型

CN201610855857.0.

一种水下设施激光增材修复的方法与装置

2016/12

发明专利授权

CN201210175163.4

一种基于无掩模光刻的变高度微流道制作方法

2012/12

发明专利授权

CN201110407831.7

一种微米级粒子高通量分选的微流控器件及其制作方法

2011/12

发明专利授权

CN201120502783.5

一种具有高深宽比微流道的微流控芯片

2011/12

实用新型授权

软件著作权

软件名称

著作权排序

完成时间

登记号

单相熔体流动数值模拟与分析软件V1.0

第一完成人

2018/03

2018SR323869

格子玻尔兹曼单相流动模拟软件V1.0

第一完成人

2017/04

2017SR417791

固液两相颗粒聚焦熵软件V1.0

第一完成人

2017/04

2017SR449758

科研项目

项目名称

项目类别

项目时间

工作类别

项目金额

面向海空装备超轻超高强结构件的钛铝合金设计与制备工艺研究

中央高校基本科研业务费专项资金(重点项目)

2019/01-2020/12

项目主持人

50万元

钛铝合金在电子束增材制造过程中凝固组织的形成规律研究

凝固技术国家重点实验室开放课题(重点项目)

2019/01-2021/12

项目主持人

20万元

电子束增材制造钛铝金属间化合物的微观组织形成机制研究

东南大学优青培育项目

2018/012018/12

项目主持人

5万元

脉冲电磁振荡对钢熔体热质输运与等轴晶迁移的影响规律

上海大学国家重点实验室开放课题

2018/012018/12

项目主持人

5万元  

电子束增材制造钛铝合金叶片的组织与性能调控技术研究

装备预研教育部联合基金(青年人才)

2018/01-2019/12

项目主持人

80万元

面向稀有循环肿瘤细胞的非标记精准检测仪器研制

国家重大科研仪器研制项目

2018/01-2022/12

项目参与人

690万元  

肿瘤细胞流动治疗机理的多尺度模拟与实验研究

国家自然科学基金
海外及港澳学者合作研究基金项目

2018/012019/12

中方合作者

18万元

复杂受限空间中强制对流条件下镍基高温合金凝固组织演变机制

国家自然科学基金面上项目

2018/01-2021/12

项目合作者

62万元

人工仿生电磁受体构建及电磁场可视化研究

中央军委科技委国防创新项目

2017/08-2018/07

项目参与人

100万元

新型镍基高温合金组合设计与全流程集成制备

国家重点研发计划
材料基因工程关键技术与支撑平台重点专项

2017/01-2020/12

一般参与人

2000万元  

纳流体环境下单个DNA分子的过孔动力学研究

国家自然科学基金青年项目

2014/01-2016/12

项目主持人

25万元

磁场诱导的金纳米壳颗粒在多尺度上的组装集体
光热性质和对NK细胞作用的研究

国家自然科学基金面上项目

2013/01-2016/12

项目参与人

78万元

单链DNA在纳流动作用下动力学行为的数值模拟研究

中国博士后科学基金面上项目

2013/01-2013/12

项目主持人

5万元  

对流枝晶生长和气泡形成的格子Boltzmann方法模拟研究

国家自然科学基金面上项目

2010/01–2012/12

项目参与人

35万元  

对流作用下三元合金凝固时枝晶生长行为的模拟研究

国家自然科学基金面上项目

2007/01–2009/12

项目参与人

30万元  

基于前沿跟踪-格子Boltzmann方法的对流枝晶生长规律研究

教育部博士点基金

2008/01–2010/12

项目参与人

6万元